E. Larivé, M. Nicolas, G. Kaya, Nicolò Riggi, A. Moulin
{"title":"β-儿茶素在结膜黑色素瘤中的表达和激活","authors":"E. Larivé, M. Nicolas, G. Kaya, Nicolò Riggi, A. Moulin","doi":"10.1159/000500682","DOIUrl":null,"url":null,"abstract":"Purpose: To assess the role of the canonical Wnt pathway via activation of β-catenin in tumor progression of conjunctival melanoma. Methods: β-Catenin localization was assessed by immunohistochemistry in 43 conjunctival nevi, 48 primary acquired melanoses (PAM; conjunctival melanocytic intraepithelial neoplasia), and 44 conjunctival melanomas. Activation of the canonical or the noncanonical Wnt pathway was tested in vitro in 4 conjunctival melanoma cell lines with stimulation of either Wnt5a or Wnt3a. Wound healing assays were performed with Wnt5a. Results: Nuclear β-catenin expression was found in 16% of the nevi, in 15% of the melanomas, and in 4% of the PAM. Membranous β-catenin expression was identified in all the nevi and PAM and in 97.7% of the melanomas. In vitro, Wnt5a stimulation in the 4 conjunctival melanomas and in 1 skin melanoma cell line did not induce nuclear translocation of β-catenin, nor did it increase cell motility in the wound healing assays. Wnt3a stimulation did not induce nuclear localization of β-catenin in any of the cell lines tested. Conclusions: In conjunctival melanoma, nuclear localization and activation of β-catenin appear to be limited, suggesting that inhibition of ARF6, responsible for β-catenin activation, in subsets of skin melanoma may not represent a treatment option for this tumor. In vitro, Wnt3a or Wnt5a did not induce nuclear β-catenin localization.","PeriodicalId":42885,"journal":{"name":"Dermatopathology","volume":"6 1","pages":"50 - 62"},"PeriodicalIF":1.6000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000500682","citationCount":"3","resultStr":"{\"title\":\"β-Catenin Expression and Activation in Conjunctival Melanoma\",\"authors\":\"E. Larivé, M. Nicolas, G. Kaya, Nicolò Riggi, A. Moulin\",\"doi\":\"10.1159/000500682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To assess the role of the canonical Wnt pathway via activation of β-catenin in tumor progression of conjunctival melanoma. Methods: β-Catenin localization was assessed by immunohistochemistry in 43 conjunctival nevi, 48 primary acquired melanoses (PAM; conjunctival melanocytic intraepithelial neoplasia), and 44 conjunctival melanomas. Activation of the canonical or the noncanonical Wnt pathway was tested in vitro in 4 conjunctival melanoma cell lines with stimulation of either Wnt5a or Wnt3a. Wound healing assays were performed with Wnt5a. Results: Nuclear β-catenin expression was found in 16% of the nevi, in 15% of the melanomas, and in 4% of the PAM. Membranous β-catenin expression was identified in all the nevi and PAM and in 97.7% of the melanomas. In vitro, Wnt5a stimulation in the 4 conjunctival melanomas and in 1 skin melanoma cell line did not induce nuclear translocation of β-catenin, nor did it increase cell motility in the wound healing assays. Wnt3a stimulation did not induce nuclear localization of β-catenin in any of the cell lines tested. Conclusions: In conjunctival melanoma, nuclear localization and activation of β-catenin appear to be limited, suggesting that inhibition of ARF6, responsible for β-catenin activation, in subsets of skin melanoma may not represent a treatment option for this tumor. In vitro, Wnt3a or Wnt5a did not induce nuclear β-catenin localization.\",\"PeriodicalId\":42885,\"journal\":{\"name\":\"Dermatopathology\",\"volume\":\"6 1\",\"pages\":\"50 - 62\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000500682\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dermatopathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000500682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000500682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
β-Catenin Expression and Activation in Conjunctival Melanoma
Purpose: To assess the role of the canonical Wnt pathway via activation of β-catenin in tumor progression of conjunctival melanoma. Methods: β-Catenin localization was assessed by immunohistochemistry in 43 conjunctival nevi, 48 primary acquired melanoses (PAM; conjunctival melanocytic intraepithelial neoplasia), and 44 conjunctival melanomas. Activation of the canonical or the noncanonical Wnt pathway was tested in vitro in 4 conjunctival melanoma cell lines with stimulation of either Wnt5a or Wnt3a. Wound healing assays were performed with Wnt5a. Results: Nuclear β-catenin expression was found in 16% of the nevi, in 15% of the melanomas, and in 4% of the PAM. Membranous β-catenin expression was identified in all the nevi and PAM and in 97.7% of the melanomas. In vitro, Wnt5a stimulation in the 4 conjunctival melanomas and in 1 skin melanoma cell line did not induce nuclear translocation of β-catenin, nor did it increase cell motility in the wound healing assays. Wnt3a stimulation did not induce nuclear localization of β-catenin in any of the cell lines tested. Conclusions: In conjunctival melanoma, nuclear localization and activation of β-catenin appear to be limited, suggesting that inhibition of ARF6, responsible for β-catenin activation, in subsets of skin melanoma may not represent a treatment option for this tumor. In vitro, Wnt3a or Wnt5a did not induce nuclear β-catenin localization.