水射流下扩孔混凝土桩的力学与数值特性

IF 1.1 Q4 ENGINEERING, GEOLOGICAL Soils and Rocks Pub Date : 2023-05-19 DOI:10.28927/sr.2023.012822
C. Ruver, G. Bruschi
{"title":"水射流下扩孔混凝土桩的力学与数值特性","authors":"C. Ruver, G. Bruschi","doi":"10.28927/sr.2023.012822","DOIUrl":null,"url":null,"abstract":"Water jet-driving technique has been shown as a viable practice for driving prefabricated piles in resistant soil layers. However, this technique is also associated with the reduction of load capacity of piles. Along these lines, the use of reams in prefabricated concrete piles improves their mechanical performance. The main objective of this research was to study the efficiency of reams on water jet-driven concrete piles; to this extent, pile loading tests and mini-cone tests were carried out before and after the driving of the piles. In addition, numerical modelling with the finite element method (FEM) was applied to study the stress-strain behavior. By means of the numerical modelling, it was possible to identify the stress and strain distribution at the tip, shaft, and reams of the piles; this allowed the understanding of the contribution of these elements in the total load capacity. Results have shown that the reams directly contribute for load capacity, with increases up to 40% when compared to conventional piles. Laboratory tests and numerical modeling proved to be fundamental tools to understand the mechanisms behind the contribution of reams to the load capacity of piles.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and numerical behavior of water jet-driven under-reamed concrete piles\",\"authors\":\"C. Ruver, G. Bruschi\",\"doi\":\"10.28927/sr.2023.012822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water jet-driving technique has been shown as a viable practice for driving prefabricated piles in resistant soil layers. However, this technique is also associated with the reduction of load capacity of piles. Along these lines, the use of reams in prefabricated concrete piles improves their mechanical performance. The main objective of this research was to study the efficiency of reams on water jet-driven concrete piles; to this extent, pile loading tests and mini-cone tests were carried out before and after the driving of the piles. In addition, numerical modelling with the finite element method (FEM) was applied to study the stress-strain behavior. By means of the numerical modelling, it was possible to identify the stress and strain distribution at the tip, shaft, and reams of the piles; this allowed the understanding of the contribution of these elements in the total load capacity. Results have shown that the reams directly contribute for load capacity, with increases up to 40% when compared to conventional piles. Laboratory tests and numerical modeling proved to be fundamental tools to understand the mechanisms behind the contribution of reams to the load capacity of piles.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.012822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.012822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

喷水打桩技术已被证明是在阻力土层中打入预制桩的可行实践。然而,这种技术也与降低桩的承载能力有关。沿着这些路线,在预制混凝土桩中使用铰孔可以提高其机械性能。本研究的主要目的是研究扩孔器在水射流混凝土桩上的效率;在这种程度上,在打桩前后进行了桩荷载试验和微型圆锥试验。此外,采用有限元数值模拟方法研究了应力-应变行为。通过数值模拟,可以确定桩端、桩身和铰孔处的应力和应变分布;这使得人们能够理解这些元件在总负载能力中的贡献。结果表明,铰孔对承载力有直接贡献,与传统桩相比,其承载力提高了40%。实验室试验和数值模拟被证明是理解铰孔对桩承载能力贡献背后机制的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical and numerical behavior of water jet-driven under-reamed concrete piles
Water jet-driving technique has been shown as a viable practice for driving prefabricated piles in resistant soil layers. However, this technique is also associated with the reduction of load capacity of piles. Along these lines, the use of reams in prefabricated concrete piles improves their mechanical performance. The main objective of this research was to study the efficiency of reams on water jet-driven concrete piles; to this extent, pile loading tests and mini-cone tests were carried out before and after the driving of the piles. In addition, numerical modelling with the finite element method (FEM) was applied to study the stress-strain behavior. By means of the numerical modelling, it was possible to identify the stress and strain distribution at the tip, shaft, and reams of the piles; this allowed the understanding of the contribution of these elements in the total load capacity. Results have shown that the reams directly contribute for load capacity, with increases up to 40% when compared to conventional piles. Laboratory tests and numerical modeling proved to be fundamental tools to understand the mechanisms behind the contribution of reams to the load capacity of piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Rocks
Soils and Rocks ENGINEERING, GEOLOGICAL-
CiteScore
1.00
自引率
20.00%
发文量
49
期刊介绍: Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).
期刊最新文献
Discussion of “Systematic literature review and mapping of the prediction of pile capacities” Primary consolidation settlement due to ramp loading: Terzaghi (1943) method revisited Behavior of clayey soil treated with nano magnesium oxide material Numerical modeling of the behavior of a surface foundation located in the proximity of a slope Analysis of sorption/desorption of cadmium and lead in the legal amazon soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1