{"title":"关于限制性虚拟时态问题:快速算法和可牵引性前沿","authors":"Carlo Comin, Romeo Rizzi","doi":"10.4230/LIPIcs.TIME.2018.10","DOIUrl":null,"url":null,"abstract":"In 2005 Kumar studied the Restricted Disjunctive Temporal Problem (RDTP), a restricted but very expressive class of disjunctive temporal problems (DTPs). It was shown that that RDTPs are solvable in deterministic strongly-polynomial time by reducing them to the Connected Row-Convex (CRC) constraints problem; plus, Kumar devised a randomized algorithm whose expected running time is less than that of the deterministic one. Instead, the most general form of DTPs allows for multi-variable disjunctions of many interval constraints and it is NP-complete. \nThis work offers a deeper comprehension on the tractability of RDTPs, leading to an elementary deterministic strongly-polynomial time algorithm for them, significantly improving the asymptotic running times of both the deterministic and randomized algorithms of Kumar. The result is obtained by reducing RDTPs to the Single-Source Shortest-Paths (SSSP) and the 2-SAT problem (jointly), instead of reducing to CRCs. In passing, we obtain a faster (quadratic-time) algorithm for RDTPs having only Type-1 and Type-2 constraints (and no Type-3 constraint). As a second main contribution, we study the tractability frontier of solving RDTPs by considering Hyper Temporal Networks (\\HTNs), a strict generalization of \\STNs grounded on hypergraphs: on one side, we prove that solving temporal problems having only Type-2 constraints and either only multi-tail or only multi-head hyperarc constraints lies in both NP and co-NP and it admits deterministic pseudo-polynomial time algorithms; on the other side, solving problems with Type-3 constraints and either only multi-tail or only multi-head hyperarc constraints turns strongly NP-complete.","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"10:1-10:20"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Restricted Disjunctive Temporal Problems: Faster Algorithms and Tractability Frontier\",\"authors\":\"Carlo Comin, Romeo Rizzi\",\"doi\":\"10.4230/LIPIcs.TIME.2018.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2005 Kumar studied the Restricted Disjunctive Temporal Problem (RDTP), a restricted but very expressive class of disjunctive temporal problems (DTPs). It was shown that that RDTPs are solvable in deterministic strongly-polynomial time by reducing them to the Connected Row-Convex (CRC) constraints problem; plus, Kumar devised a randomized algorithm whose expected running time is less than that of the deterministic one. Instead, the most general form of DTPs allows for multi-variable disjunctions of many interval constraints and it is NP-complete. \\nThis work offers a deeper comprehension on the tractability of RDTPs, leading to an elementary deterministic strongly-polynomial time algorithm for them, significantly improving the asymptotic running times of both the deterministic and randomized algorithms of Kumar. The result is obtained by reducing RDTPs to the Single-Source Shortest-Paths (SSSP) and the 2-SAT problem (jointly), instead of reducing to CRCs. In passing, we obtain a faster (quadratic-time) algorithm for RDTPs having only Type-1 and Type-2 constraints (and no Type-3 constraint). As a second main contribution, we study the tractability frontier of solving RDTPs by considering Hyper Temporal Networks (\\\\HTNs), a strict generalization of \\\\STNs grounded on hypergraphs: on one side, we prove that solving temporal problems having only Type-2 constraints and either only multi-tail or only multi-head hyperarc constraints lies in both NP and co-NP and it admits deterministic pseudo-polynomial time algorithms; on the other side, solving problems with Type-3 constraints and either only multi-tail or only multi-head hyperarc constraints turns strongly NP-complete.\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"1 1\",\"pages\":\"10:1-10:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2018.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2018.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Restricted Disjunctive Temporal Problems: Faster Algorithms and Tractability Frontier
In 2005 Kumar studied the Restricted Disjunctive Temporal Problem (RDTP), a restricted but very expressive class of disjunctive temporal problems (DTPs). It was shown that that RDTPs are solvable in deterministic strongly-polynomial time by reducing them to the Connected Row-Convex (CRC) constraints problem; plus, Kumar devised a randomized algorithm whose expected running time is less than that of the deterministic one. Instead, the most general form of DTPs allows for multi-variable disjunctions of many interval constraints and it is NP-complete.
This work offers a deeper comprehension on the tractability of RDTPs, leading to an elementary deterministic strongly-polynomial time algorithm for them, significantly improving the asymptotic running times of both the deterministic and randomized algorithms of Kumar. The result is obtained by reducing RDTPs to the Single-Source Shortest-Paths (SSSP) and the 2-SAT problem (jointly), instead of reducing to CRCs. In passing, we obtain a faster (quadratic-time) algorithm for RDTPs having only Type-1 and Type-2 constraints (and no Type-3 constraint). As a second main contribution, we study the tractability frontier of solving RDTPs by considering Hyper Temporal Networks (\HTNs), a strict generalization of \STNs grounded on hypergraphs: on one side, we prove that solving temporal problems having only Type-2 constraints and either only multi-tail or only multi-head hyperarc constraints lies in both NP and co-NP and it admits deterministic pseudo-polynomial time algorithms; on the other side, solving problems with Type-3 constraints and either only multi-tail or only multi-head hyperarc constraints turns strongly NP-complete.