发育时机的演变是大脑多样性的驱动力

IF 2.1 4区 心理学 Q3 BEHAVIORAL SCIENCES Brain Behavior and Evolution Pub Date : 2022-03-28 DOI:10.1159/000524334
Rodrigo Suárez, A. Halley
{"title":"发育时机的演变是大脑多样性的驱动力","authors":"Rodrigo Suárez, A. Halley","doi":"10.1159/000524334","DOIUrl":null,"url":null,"abstract":"The question of how complex traits originate and diversify has marveled naturalists for millennia. From the notion of development as a series of transformations beyond 'pre-formed' growth by Aristotle, to von Baer's recognition of phylogenetic differentiation that set the foundations of modern evo-devo thinking, a central theme has been the nature of biological change (and conservation) across temporal scales. Since the last universal common ancestors, recurrent series of ontogenies have negotiated conservation and change, thus generating the phylogenetic tree against the regularities of planetary rhythms (e.g., tides, days, seasons) as well as organismic dynamics (e.g., embryogenesis, metabolism, behavior). Accordingly, differences in the relative timing of developmental processes (i.e., heterochronies) have long been considered as a major source of evolutionary diversity. To further reflect upon the mechanisms by which changes in developmental timing have shaped brain evolution, the 32nd Annual Karger Workshop in Evolutionary Neuroscience included a diverse panel of speakers to address the topic of Heterochrony in Comparative Neurodevelopment. This Special Edition of Brain Behavior & Evolution is a collection of articles contributed by these speakers around this central theme. The contributed papers are quite diverse in their focus, their methods, and the insights they provide. However, a common thread in these reflections is the understanding of organisms as dynamic systems, embedded within an ecological context, which arise via an epigenetic process of developmental transformations, and consist of coherent yet dissociable modules. Evolution takes place by a differential tinkering of these developmental processes, generating innovations within the constraints of an organism's viability. Our understanding of how development affects evolution has moved beyond a simplistic dichotomy of genotype-phenotype to incorporate the many contexts in which variation can result in the conservation of new contingencies. In our view, this collection of articles builds upon these notions to highlight some of the mechanisms by which heterochrony, understood as a consequence of the evolution of developmental processes rather than a developmental process in and of itself, has contributed to the generation of diversity in complex brain features.","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"97 1","pages":"3 - 7"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Developmental Timing as a Driving Force of Brain Diversity\",\"authors\":\"Rodrigo Suárez, A. Halley\",\"doi\":\"10.1159/000524334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of how complex traits originate and diversify has marveled naturalists for millennia. From the notion of development as a series of transformations beyond 'pre-formed' growth by Aristotle, to von Baer's recognition of phylogenetic differentiation that set the foundations of modern evo-devo thinking, a central theme has been the nature of biological change (and conservation) across temporal scales. Since the last universal common ancestors, recurrent series of ontogenies have negotiated conservation and change, thus generating the phylogenetic tree against the regularities of planetary rhythms (e.g., tides, days, seasons) as well as organismic dynamics (e.g., embryogenesis, metabolism, behavior). Accordingly, differences in the relative timing of developmental processes (i.e., heterochronies) have long been considered as a major source of evolutionary diversity. To further reflect upon the mechanisms by which changes in developmental timing have shaped brain evolution, the 32nd Annual Karger Workshop in Evolutionary Neuroscience included a diverse panel of speakers to address the topic of Heterochrony in Comparative Neurodevelopment. This Special Edition of Brain Behavior & Evolution is a collection of articles contributed by these speakers around this central theme. The contributed papers are quite diverse in their focus, their methods, and the insights they provide. However, a common thread in these reflections is the understanding of organisms as dynamic systems, embedded within an ecological context, which arise via an epigenetic process of developmental transformations, and consist of coherent yet dissociable modules. Evolution takes place by a differential tinkering of these developmental processes, generating innovations within the constraints of an organism's viability. Our understanding of how development affects evolution has moved beyond a simplistic dichotomy of genotype-phenotype to incorporate the many contexts in which variation can result in the conservation of new contingencies. In our view, this collection of articles builds upon these notions to highlight some of the mechanisms by which heterochrony, understood as a consequence of the evolution of developmental processes rather than a developmental process in and of itself, has contributed to the generation of diversity in complex brain features.\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"97 1\",\"pages\":\"3 - 7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000524334\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000524334","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

几千年来,复杂特征是如何产生和多样化的问题一直让博物学家感到惊奇。从亚里士多德提出的一系列超越“预形成”增长的转变的发展概念,到冯·贝尔对系统发育分化的认识,奠定了现代进化思想的基础,一个中心主题是跨越时间尺度的生物变化(和保护)的本质。自最后一个普遍的共同祖先以来,一系列的个体发生已经通过保存和变化,从而产生了反对行星节律(例如,潮汐,日子,季节)以及生物体动力学(例如,胚胎发生,代谢,行为)规律的系统发育树。因此,发育过程相对时间的差异(即异时性)一直被认为是进化多样性的主要来源。为了进一步思考发育时间的变化对大脑进化的影响机制,第32届进化神经科学年度研讨会邀请了不同的演讲者来讨论比较神经发育中的异时性问题。本期《大脑行为与进化》特别版是这些演讲者围绕这一中心主题撰写的文章的合集。贡献的论文在他们的焦点、方法和他们提供的见解上是相当多样化的。然而,这些反思的共同点是将生物体理解为动态系统,嵌入生态环境中,通过发育转化的表观遗传过程产生,由连贯但可分离的模块组成。进化是通过对这些发育过程的不同修修补补,在生物体生存能力的限制下产生创新而发生的。我们对发育如何影响进化的理解已经超越了简单的基因型-表现型二分法,纳入了变异可能导致新偶然性保存的许多背景。在我们看来,这一系列文章建立在这些概念的基础上,强调了一些机制,通过这些机制,异质性(被理解为发育过程进化的结果,而不是发育过程本身)促成了复杂大脑特征多样性的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of Developmental Timing as a Driving Force of Brain Diversity
The question of how complex traits originate and diversify has marveled naturalists for millennia. From the notion of development as a series of transformations beyond 'pre-formed' growth by Aristotle, to von Baer's recognition of phylogenetic differentiation that set the foundations of modern evo-devo thinking, a central theme has been the nature of biological change (and conservation) across temporal scales. Since the last universal common ancestors, recurrent series of ontogenies have negotiated conservation and change, thus generating the phylogenetic tree against the regularities of planetary rhythms (e.g., tides, days, seasons) as well as organismic dynamics (e.g., embryogenesis, metabolism, behavior). Accordingly, differences in the relative timing of developmental processes (i.e., heterochronies) have long been considered as a major source of evolutionary diversity. To further reflect upon the mechanisms by which changes in developmental timing have shaped brain evolution, the 32nd Annual Karger Workshop in Evolutionary Neuroscience included a diverse panel of speakers to address the topic of Heterochrony in Comparative Neurodevelopment. This Special Edition of Brain Behavior & Evolution is a collection of articles contributed by these speakers around this central theme. The contributed papers are quite diverse in their focus, their methods, and the insights they provide. However, a common thread in these reflections is the understanding of organisms as dynamic systems, embedded within an ecological context, which arise via an epigenetic process of developmental transformations, and consist of coherent yet dissociable modules. Evolution takes place by a differential tinkering of these developmental processes, generating innovations within the constraints of an organism's viability. Our understanding of how development affects evolution has moved beyond a simplistic dichotomy of genotype-phenotype to incorporate the many contexts in which variation can result in the conservation of new contingencies. In our view, this collection of articles builds upon these notions to highlight some of the mechanisms by which heterochrony, understood as a consequence of the evolution of developmental processes rather than a developmental process in and of itself, has contributed to the generation of diversity in complex brain features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Behavior and Evolution
Brain Behavior and Evolution 医学-行为科学
CiteScore
3.10
自引率
23.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: ''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.
期刊最新文献
Evolution of plasticity in brain morphology. Population Density Drives Concerted Increase in Whole Brain Volume in a Wrasse Species Coris batuensis. Exploring the Expanded Role of Astrocytes in Primate Brain Evolution via Changes in Gene Expression. Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus). Organization of the Perioral Representation of the Primary Somatosensory Cortex in Prairie Voles (Microtus ochrogaster).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1