一种新型无创可穿戴式眼压测量传感器

Angelica Campigotto, Yongjun Lai
{"title":"一种新型无创可穿戴式眼压测量传感器","authors":"Angelica Campigotto,&nbsp;Yongjun Lai","doi":"10.1002/mds3.10086","DOIUrl":null,"url":null,"abstract":"<p>Glaucoma is a chronic eye disease where an increase in intraocular pressure (IOP) permanently damaging the optic nerve leading to irreversible vision loss. Intraocular pressure is the main factor for monitoring the progression of glaucoma and has been found to fluctuate throughout the day. A continuous monitoring system can track the fluctuations in the intraocular pressure throughout the day, improving the management of the disease. A novel non-invasive wearable sensor was created to monitor the fluctuating corneal curvature of the eye and directly relate the deformation to the intraocular pressure. The wearable sensor was able to capture on average 40.8 µm/mmHg with a standard deviation of 29.4 in fluid location per increase in intraocular pressure with an ability to return over 80% back to its original position indicating a good ability to accurately track the fluctuations in the IOP.</p>","PeriodicalId":87324,"journal":{"name":"Medical devices & sensors","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mds3.10086","citationCount":"10","resultStr":"{\"title\":\"A novel non-invasive wearable sensor for intraocular pressure measurement\",\"authors\":\"Angelica Campigotto,&nbsp;Yongjun Lai\",\"doi\":\"10.1002/mds3.10086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glaucoma is a chronic eye disease where an increase in intraocular pressure (IOP) permanently damaging the optic nerve leading to irreversible vision loss. Intraocular pressure is the main factor for monitoring the progression of glaucoma and has been found to fluctuate throughout the day. A continuous monitoring system can track the fluctuations in the intraocular pressure throughout the day, improving the management of the disease. A novel non-invasive wearable sensor was created to monitor the fluctuating corneal curvature of the eye and directly relate the deformation to the intraocular pressure. The wearable sensor was able to capture on average 40.8 µm/mmHg with a standard deviation of 29.4 in fluid location per increase in intraocular pressure with an ability to return over 80% back to its original position indicating a good ability to accurately track the fluctuations in the IOP.</p>\",\"PeriodicalId\":87324,\"journal\":{\"name\":\"Medical devices & sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/mds3.10086\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical devices & sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mds3.10086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical devices & sensors","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mds3.10086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

青光眼是一种慢性眼病,眼内压(IOP)升高会永久性地损害视神经,导致不可逆的视力丧失。眼压是监测青光眼进展的主要因素,并在一天中波动。连续监测系统可以全天跟踪眼压的波动,改善疾病的管理。设计了一种新型的无创可穿戴传感器,用于监测眼睛角膜曲率的波动,并将变形与眼压直接联系起来。眼压每升高一次,该可穿戴传感器能够捕获平均40.8µm/mmHg的流体位置,标准偏差为29.4,并且能够恢复到原始位置的80%以上,表明能够准确跟踪IOP的波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel non-invasive wearable sensor for intraocular pressure measurement

Glaucoma is a chronic eye disease where an increase in intraocular pressure (IOP) permanently damaging the optic nerve leading to irreversible vision loss. Intraocular pressure is the main factor for monitoring the progression of glaucoma and has been found to fluctuate throughout the day. A continuous monitoring system can track the fluctuations in the intraocular pressure throughout the day, improving the management of the disease. A novel non-invasive wearable sensor was created to monitor the fluctuating corneal curvature of the eye and directly relate the deformation to the intraocular pressure. The wearable sensor was able to capture on average 40.8 µm/mmHg with a standard deviation of 29.4 in fluid location per increase in intraocular pressure with an ability to return over 80% back to its original position indicating a good ability to accurately track the fluctuations in the IOP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Featured Cover The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’ Molecularly imprinted materials for biomedical sensing 3D printing of polymeric Coatings on AZ31 Mg alloy Substrate for Corrosion Protection of biomedical implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1