{"title":"基于热带地区逐时雨量资料的年降雨侵蚀力指数估算","authors":"Ming-Hsi Lee, I-Ping Hsu","doi":"10.17221/25/2020-swr","DOIUrl":null,"url":null,"abstract":"The annual mean rainfall erosivity (R) indicates the potential soil loss caused by the precipitation and runoff and is used to predict the soil loss from agricultural hillslopes. R is calculated from rainfall stations with continuously recording rainfall databases. However, many short-term real-time rainfall databases that also relate to the rainfall intensity are not readily available around Taiwan, with the hourly rainfall data being predominantly available. The annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation converted to the 30-min rainfall data (R10_30) can be estimated using the annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation convert to the hourly rainfall data (R10_60) that are calculated from the kinetic energy calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (E60j). The maximum 60-min rainfall intensity calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (I60j) has been established in rainfall stations throughout southern Taiwan. The 10-min rainfall data set consists of 15 221 storm events from 2002 to 2017 monitored by 51 rainfall stations located in the tropical regions in Taiwan. According to the results of this study, the average conversion factors of the kinetic energy (1.04), rainfall erosivity (1.47), and annual mean rainfall erosivity (1.30) could be estimated based on the 10-min rainfall data.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of the annual rainfall erosivity index based on hourly rainfall data in a tropical region\",\"authors\":\"Ming-Hsi Lee, I-Ping Hsu\",\"doi\":\"10.17221/25/2020-swr\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The annual mean rainfall erosivity (R) indicates the potential soil loss caused by the precipitation and runoff and is used to predict the soil loss from agricultural hillslopes. R is calculated from rainfall stations with continuously recording rainfall databases. However, many short-term real-time rainfall databases that also relate to the rainfall intensity are not readily available around Taiwan, with the hourly rainfall data being predominantly available. The annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation converted to the 30-min rainfall data (R10_30) can be estimated using the annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation convert to the hourly rainfall data (R10_60) that are calculated from the kinetic energy calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (E60j). The maximum 60-min rainfall intensity calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (I60j) has been established in rainfall stations throughout southern Taiwan. The 10-min rainfall data set consists of 15 221 storm events from 2002 to 2017 monitored by 51 rainfall stations located in the tropical regions in Taiwan. According to the results of this study, the average conversion factors of the kinetic energy (1.04), rainfall erosivity (1.47), and annual mean rainfall erosivity (1.30) could be estimated based on the 10-min rainfall data.\",\"PeriodicalId\":48982,\"journal\":{\"name\":\"Soil and Water Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Water Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/25/2020-swr\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Water Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/25/2020-swr","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Estimation of the annual rainfall erosivity index based on hourly rainfall data in a tropical region
The annual mean rainfall erosivity (R) indicates the potential soil loss caused by the precipitation and runoff and is used to predict the soil loss from agricultural hillslopes. R is calculated from rainfall stations with continuously recording rainfall databases. However, many short-term real-time rainfall databases that also relate to the rainfall intensity are not readily available around Taiwan, with the hourly rainfall data being predominantly available. The annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation converted to the 30-min rainfall data (R10_30) can be estimated using the annual mean rainfall erosivity calculated by the 10-min rainfall data accumulation convert to the hourly rainfall data (R10_60) that are calculated from the kinetic energy calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (E60j). The maximum 60-min rainfall intensity calculated by the 10-min rainfall data accumulation converted to the hourly rainfall data (I60j) has been established in rainfall stations throughout southern Taiwan. The 10-min rainfall data set consists of 15 221 storm events from 2002 to 2017 monitored by 51 rainfall stations located in the tropical regions in Taiwan. According to the results of this study, the average conversion factors of the kinetic energy (1.04), rainfall erosivity (1.47), and annual mean rainfall erosivity (1.30) could be estimated based on the 10-min rainfall data.
期刊介绍:
An international peer-reviewed journal published under the auspices of the Czech Academy of Agricultural Sciences and financed by the Ministry of Agriculture of the Czech Republic. Published since 2006.
Thematic: original papers, short communications and critical reviews from all fields of science and engineering related to soil and water and their interactions in natural and man-modified landscapes, with a particular focus on agricultural land use. The fields encompassed include, but are not limited to, the basic and applied soil science, soil hydrology, irrigation and drainage of lands, hydrology, management and revitalisation of small water streams and small water reservoirs, including fishponds, soil erosion research and control, drought and flood control, wetland restoration and protection, surface and ground water protection in therms of their quantity and quality.