{"title":"半球形和环形活塞碗形状对柴油机燃烧特性影响的对比研究","authors":"M. Channappagoudra, K. Ramesh, G. Manavendra","doi":"10.18331/BRJ2018.5.3.5","DOIUrl":null,"url":null,"abstract":"Diesel engine parameters are in general more compatible with operating on neat diesel than biodiesel and its blends. Therefore, optimizing operating conditions as well as piston bowl geometry to achieve a better performance with biodiesel in conventional diesel engines is highly essential. In the present study, hemispherical piston bowl geometry (HPBG) of existing diesel engine was modified into toroidal piston bowl geometry (TPBG) to evaluate the performance of a diesel engine running on a 20% blend of dairy scum oil biodiesel (B20). The experimental results revealed increased brake thermal efficiency and heat release rate by 5.5% and 17.24%, respectively, while brake specific fuel consumption, HC emission, and CO emission were decreased by 8.75%, 15%, and 14.47%, respectively, in response to the engine modification applied. Such improvements using the TPBG could be attributed to improved fuel atomization, reduction of fuel droplet size, increased cylinder temperature, enhanced squish-swirl, and turbulence kinetic energy during combustion. The findings of the present study could pave the way for the fabrication of diesel engines, which are more efficiently compatible with biodiesel and its blends.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Comparative investigation of the effect of hemispherical and toroidal piston bowl geometries on diesel engine combustion characteristics\",\"authors\":\"M. Channappagoudra, K. Ramesh, G. Manavendra\",\"doi\":\"10.18331/BRJ2018.5.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diesel engine parameters are in general more compatible with operating on neat diesel than biodiesel and its blends. Therefore, optimizing operating conditions as well as piston bowl geometry to achieve a better performance with biodiesel in conventional diesel engines is highly essential. In the present study, hemispherical piston bowl geometry (HPBG) of existing diesel engine was modified into toroidal piston bowl geometry (TPBG) to evaluate the performance of a diesel engine running on a 20% blend of dairy scum oil biodiesel (B20). The experimental results revealed increased brake thermal efficiency and heat release rate by 5.5% and 17.24%, respectively, while brake specific fuel consumption, HC emission, and CO emission were decreased by 8.75%, 15%, and 14.47%, respectively, in response to the engine modification applied. Such improvements using the TPBG could be attributed to improved fuel atomization, reduction of fuel droplet size, increased cylinder temperature, enhanced squish-swirl, and turbulence kinetic energy during combustion. The findings of the present study could pave the way for the fabrication of diesel engines, which are more efficiently compatible with biodiesel and its blends.\",\"PeriodicalId\":46938,\"journal\":{\"name\":\"Biofuel Research Journal-BRJ\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuel Research Journal-BRJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18331/BRJ2018.5.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comparative investigation of the effect of hemispherical and toroidal piston bowl geometries on diesel engine combustion characteristics
Diesel engine parameters are in general more compatible with operating on neat diesel than biodiesel and its blends. Therefore, optimizing operating conditions as well as piston bowl geometry to achieve a better performance with biodiesel in conventional diesel engines is highly essential. In the present study, hemispherical piston bowl geometry (HPBG) of existing diesel engine was modified into toroidal piston bowl geometry (TPBG) to evaluate the performance of a diesel engine running on a 20% blend of dairy scum oil biodiesel (B20). The experimental results revealed increased brake thermal efficiency and heat release rate by 5.5% and 17.24%, respectively, while brake specific fuel consumption, HC emission, and CO emission were decreased by 8.75%, 15%, and 14.47%, respectively, in response to the engine modification applied. Such improvements using the TPBG could be attributed to improved fuel atomization, reduction of fuel droplet size, increased cylinder temperature, enhanced squish-swirl, and turbulence kinetic energy during combustion. The findings of the present study could pave the way for the fabrication of diesel engines, which are more efficiently compatible with biodiesel and its blends.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.