基于水能最优点(水能关系)开发资源分配和技术评估的综合模型,案例研究:温室

Ahmad Hosseinnejad, Y. Saboohi, G. Zarei, J. Shayegan
{"title":"基于水能最优点(水能关系)开发资源分配和技术评估的综合模型,案例研究:温室","authors":"Ahmad Hosseinnejad, Y. Saboohi, G. Zarei, J. Shayegan","doi":"10.13044/j.sdewes.d10.0416","DOIUrl":null,"url":null,"abstract":"Water-energy nexus approach analyses water and energy interactions to provide sustainable usage of resources. This study incorporates a comprehensive bottom-up optimization model to assess the combination of technologies based on the water-energy nexus (watergy) optimal point. To achieve this goal, the watergy reference system is introduced according to six principles of watergy system. In this study, a new method is developed by adding an integration layer to the optimizing model with the objective function of the minimum total cost. In this layer, the demands for water and energy, for supplying the water and energy services, are calculated endogenously. A sensitivity analysis is performed by presenting six scenarios for greenhouse case study. Results indicate that the drainage recycling, combined heat and power, and photovoltaic were chosen at the watergy optimal point. Compared to the base case scenario, the maximum achievable reduction in the total cost of production is 31% in the most costeffective scenario (Scenario B). Also, among the modelled scenarios, the optimal combination of technologies could result in reducing the use of water, electricity, and fertilizer by 18%, 31%, and 25% respectively.","PeriodicalId":46202,"journal":{"name":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Developing an integrated model for allocating resources and assessing technologies based on the watergy optimal point (water-energy nexus), case study: a greenhouse\",\"authors\":\"Ahmad Hosseinnejad, Y. Saboohi, G. Zarei, J. Shayegan\",\"doi\":\"10.13044/j.sdewes.d10.0416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water-energy nexus approach analyses water and energy interactions to provide sustainable usage of resources. This study incorporates a comprehensive bottom-up optimization model to assess the combination of technologies based on the water-energy nexus (watergy) optimal point. To achieve this goal, the watergy reference system is introduced according to six principles of watergy system. In this study, a new method is developed by adding an integration layer to the optimizing model with the objective function of the minimum total cost. In this layer, the demands for water and energy, for supplying the water and energy services, are calculated endogenously. A sensitivity analysis is performed by presenting six scenarios for greenhouse case study. Results indicate that the drainage recycling, combined heat and power, and photovoltaic were chosen at the watergy optimal point. Compared to the base case scenario, the maximum achievable reduction in the total cost of production is 31% in the most costeffective scenario (Scenario B). Also, among the modelled scenarios, the optimal combination of technologies could result in reducing the use of water, electricity, and fertilizer by 18%, 31%, and 25% respectively.\",\"PeriodicalId\":46202,\"journal\":{\"name\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13044/j.sdewes.d10.0416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13044/j.sdewes.d10.0416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

水-能源联系方法分析水和能源的相互作用,以提供资源的可持续利用。本研究基于水能关系(watergy)最优点,采用自下而上的综合优化模型对技术组合进行评价。为了实现这一目标,根据水能系统的六个原理,引入了水能参考系。本文提出了一种以总成本最小为目标函数,在优化模型中加入集成层的方法。在这一层,对水和能源的需求,为提供水和能源服务,是内生计算的。通过提出温室案例研究的六种情景,进行了敏感性分析。结果表明,水能最优点选择排水循环、热电联产和光伏发电。与基本情景相比,在最具成本效益的情景(情景B)中,总生产成本可实现的最大降幅为31%。此外,在建模情景中,最优技术组合可使水、电和肥料的使用分别减少18%、31%和25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing an integrated model for allocating resources and assessing technologies based on the watergy optimal point (water-energy nexus), case study: a greenhouse
Water-energy nexus approach analyses water and energy interactions to provide sustainable usage of resources. This study incorporates a comprehensive bottom-up optimization model to assess the combination of technologies based on the water-energy nexus (watergy) optimal point. To achieve this goal, the watergy reference system is introduced according to six principles of watergy system. In this study, a new method is developed by adding an integration layer to the optimizing model with the objective function of the minimum total cost. In this layer, the demands for water and energy, for supplying the water and energy services, are calculated endogenously. A sensitivity analysis is performed by presenting six scenarios for greenhouse case study. Results indicate that the drainage recycling, combined heat and power, and photovoltaic were chosen at the watergy optimal point. Compared to the base case scenario, the maximum achievable reduction in the total cost of production is 31% in the most costeffective scenario (Scenario B). Also, among the modelled scenarios, the optimal combination of technologies could result in reducing the use of water, electricity, and fertilizer by 18%, 31%, and 25% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
9.50%
发文量
59
审稿时长
20 weeks
期刊介绍: The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations.
期刊最新文献
High-value chemicals production via eco-industrial park: heat integration, safety, and environmental analysis Sewage sludge co-digestion with mango peel liquor: impact of hydraulic retention time on methane yield and bioenergy recovery Cinemetrics of environmental educational video materials according to the analysis of the use of color and frame length Ecological and Economic Feasibility of Inductive Heating for Sustainable Press Hardening Processes Spatiotemporal Analysis of the Impacts of Climate Change on UAE Mangroves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1