{"title":"基于裂纹强度的表面膏体处理优化设计研究","authors":"A. Bascetin, S. Tuylu, D. Adiguzel","doi":"10.1080/17480930.2023.2232987","DOIUrl":null,"url":null,"abstract":"ABSTRACT There are many factors affecting the mechanical and geochemical stability of the surface paste disposal (SPD) method. The most important of these are the cracks occurring during the storage of tailings. The relationship between the volumetric water content (VWC), matrix absorption (MS), and oxygen (O2) values of the paste material are important in the formation of cracks. In this study, surface crack formations of the paste material stored at the laboratory in accordance with 3 different storage methods (cemented and uncemented) were observed during the pour and after the deposition, and crack intensity factor (CIF) was measured. The relationship between CIF with VWC, MS, and O2 parameters was examined. As a result, the CIF value decreases approximately by %75 with cement addition in the lowest and highest layers in the SPD method. In a case receiving the most rain, the crack intensity value of the highest layer was determined to be 3,9% in the Design 3 where cement was used in the lowest and highest layers. In addition, VWC, MS, and O2 levels were 35%, −29 kPa, and 17.5%, respectively, making the paste material more efficient in terms of mechanical and geochemical stability.","PeriodicalId":49180,"journal":{"name":"International Journal of Mining Reclamation and Environment","volume":"37 1","pages":"590 - 605"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of optimal surface paste disposal design based on crack intensity\",\"authors\":\"A. Bascetin, S. Tuylu, D. Adiguzel\",\"doi\":\"10.1080/17480930.2023.2232987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There are many factors affecting the mechanical and geochemical stability of the surface paste disposal (SPD) method. The most important of these are the cracks occurring during the storage of tailings. The relationship between the volumetric water content (VWC), matrix absorption (MS), and oxygen (O2) values of the paste material are important in the formation of cracks. In this study, surface crack formations of the paste material stored at the laboratory in accordance with 3 different storage methods (cemented and uncemented) were observed during the pour and after the deposition, and crack intensity factor (CIF) was measured. The relationship between CIF with VWC, MS, and O2 parameters was examined. As a result, the CIF value decreases approximately by %75 with cement addition in the lowest and highest layers in the SPD method. In a case receiving the most rain, the crack intensity value of the highest layer was determined to be 3,9% in the Design 3 where cement was used in the lowest and highest layers. In addition, VWC, MS, and O2 levels were 35%, −29 kPa, and 17.5%, respectively, making the paste material more efficient in terms of mechanical and geochemical stability.\",\"PeriodicalId\":49180,\"journal\":{\"name\":\"International Journal of Mining Reclamation and Environment\",\"volume\":\"37 1\",\"pages\":\"590 - 605\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Reclamation and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17480930.2023.2232987\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Reclamation and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17480930.2023.2232987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Investigation of optimal surface paste disposal design based on crack intensity
ABSTRACT There are many factors affecting the mechanical and geochemical stability of the surface paste disposal (SPD) method. The most important of these are the cracks occurring during the storage of tailings. The relationship between the volumetric water content (VWC), matrix absorption (MS), and oxygen (O2) values of the paste material are important in the formation of cracks. In this study, surface crack formations of the paste material stored at the laboratory in accordance with 3 different storage methods (cemented and uncemented) were observed during the pour and after the deposition, and crack intensity factor (CIF) was measured. The relationship between CIF with VWC, MS, and O2 parameters was examined. As a result, the CIF value decreases approximately by %75 with cement addition in the lowest and highest layers in the SPD method. In a case receiving the most rain, the crack intensity value of the highest layer was determined to be 3,9% in the Design 3 where cement was used in the lowest and highest layers. In addition, VWC, MS, and O2 levels were 35%, −29 kPa, and 17.5%, respectively, making the paste material more efficient in terms of mechanical and geochemical stability.
期刊介绍:
The International Journal of Mining, Reclamation and Environment published research on mining and environmental technology engineering relating to metalliferous deposits, coal, oil sands, and industrial minerals.
We welcome environmental mining research papers that explore:
-Mining environmental impact assessment and permitting-
Mining and processing technologies-
Mining waste management and waste minimization practices in mining-
Mine site closure-
Mining decommissioning and reclamation-
Acid mine drainage.
The International Journal of Mining, Reclamation and Environment welcomes mining research papers that explore:
-Design of surface and underground mines (economics, geotechnical, production scheduling, ventilation)-
Mine planning and optimization-
Mining geostatics-
Mine drilling and blasting technologies-
Mining material handling systems-
Mine equipment