在全机械化收获作业中,作为车辙严重程度预测指标的水深图

IF 2.1 3区 农林科学 Q2 FORESTRY International Journal of Forest Engineering Pub Date : 2022-03-14 DOI:10.1080/14942119.2022.2044724
J. Heppelmann, B. Talbot, C. Antón Fernández, R. Astrup
{"title":"在全机械化收获作业中,作为车辙严重程度预测指标的水深图","authors":"J. Heppelmann, B. Talbot, C. Antón Fernández, R. Astrup","doi":"10.1080/14942119.2022.2044724","DOIUrl":null,"url":null,"abstract":"ABSTRACT The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting operations. Therefore, knowledge and information about stand and soil characteristics are vital to the planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can serve as reliable decision-making tool in minimizing the environmental effects of big machinery deployment. While the machine operators did not have access to these predictions (DTW maps) during the operations, there was no visual evidence that driving through these areas was actively avoided, resulting in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, significant differences between sites exist which might be attributed to a series of other factors such as soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence highly recommended in any further follow-up studies on soil trafficability.","PeriodicalId":55998,"journal":{"name":"International Journal of Forest Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Depth-to-water maps as predictors of rut severity in fully mechanized harvesting operations\",\"authors\":\"J. Heppelmann, B. Talbot, C. Antón Fernández, R. Astrup\",\"doi\":\"10.1080/14942119.2022.2044724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting operations. Therefore, knowledge and information about stand and soil characteristics are vital to the planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can serve as reliable decision-making tool in minimizing the environmental effects of big machinery deployment. While the machine operators did not have access to these predictions (DTW maps) during the operations, there was no visual evidence that driving through these areas was actively avoided, resulting in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, significant differences between sites exist which might be attributed to a series of other factors such as soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence highly recommended in any further follow-up studies on soil trafficability.\",\"PeriodicalId\":55998,\"journal\":{\"name\":\"International Journal of Forest Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forest Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/14942119.2022.2044724\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/14942119.2022.2044724","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

摘要

摘要保护森林土壤的功能是规划机械化采伐作业的一个关键方面。因此,有关林分和土壤特征的知识和信息对规划过程至关重要。在这方面,对水深(DTW)图作为车轮车辙预测工具的潜在用途进行了审查。为了测试开源DTW地图对车辙预测的适用性,使用无人机(UAV)在收割后记录了20个清晰场地的地表条件。总的来说,80公里的机器轨道根据车辙形成的严重程度进行了分类,以调查:i)操作员是否直观地避开DTW值较低的区域,ii)DTW值的降低和车辙严重程度的增加之间存在相关性,以及iii)DTW图是否可以作为可靠的决策工具,最大限度地减少大型机械部署的环境影响。虽然机器操作员在操作过程中无法获得这些预测(DTW图),但没有视觉证据表明主动避免了在这些区域行驶,导致DTW值<1 m的区域内严重车辙密度更高。逻辑回归分析证实,严重车辙的概率随着DTW值的降低而迅速增加。然而,场地之间存在显著差异,这可能归因于一系列其他因素,如土壤类型、天气条件、通行次数和承载能力。因此,强烈建议在任何进一步的土壤可通行性后续研究中监测这些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth-to-water maps as predictors of rut severity in fully mechanized harvesting operations
ABSTRACT The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting operations. Therefore, knowledge and information about stand and soil characteristics are vital to the planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can serve as reliable decision-making tool in minimizing the environmental effects of big machinery deployment. While the machine operators did not have access to these predictions (DTW maps) during the operations, there was no visual evidence that driving through these areas was actively avoided, resulting in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, significant differences between sites exist which might be attributed to a series of other factors such as soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence highly recommended in any further follow-up studies on soil trafficability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
21.10%
发文量
33
期刊最新文献
Productivity benchmarks for unguyed excavator-based tower yarders Novel approach for forest road maintenance using smartphone sensor data and deep learning methods Machine learning applications in forest and biomass supply chain management: a review Mechanical site preparation in South Africa: comparing the productivity of pitting machine operators under different site conditions Stem recovery and harvesting productivity of two different harvesting systems in final felling of Pinus patula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1