S. P. Fodouop, Alex Doris Kengni Mboussaah, Didiane Yemele Mefokou, A. Fowa, Mahwish Siddiqui, G. T. Kamsu, D. Gatsing, M. Choudhary
{"title":"镰刀菌对去甲雄烯二酮的生物转化潜力及转化产物脲酶和糜蛋白酶性质的评价","authors":"S. P. Fodouop, Alex Doris Kengni Mboussaah, Didiane Yemele Mefokou, A. Fowa, Mahwish Siddiqui, G. T. Kamsu, D. Gatsing, M. Choudhary","doi":"10.4236/ABC.2021.112006","DOIUrl":null,"url":null,"abstract":"Several androgenic steroids have been biotransformed \nby fungi into metabolites with numerous biological properties. Incubation of \nnorandrostenedione (1) with Fusarium lini NRRL 2204 was carried out for the first time, yielding two new \nmetabolites, 3,7β-dihydroxy-19-norandrost-1,3,5-trien-17-one (3) and 6α,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with three known compounds, 3-hydroxy-19-norandrost-1,3,5-trien-17-one \n(2), 10β, 17β-dihydroxy-19-nor-4-androsten-3-one (5) and 10β-hydroxy-19-nor-4- androsten-3,17-dione (6). Their structures were elucidated by extensive \nspectroscopic analyses, including 1D-, 2D-NMR, and HR-MS experiments. Substrate 1 and its derivatives 2-6 were evaluated in vitro for their urease and chymotrypsin inhibitory properties. \nCompounds 2 and 3 were found to have strong urease activity with \nIC50 = 23.7 ± 0.17 and 10.2 ± 0.28 μm, respectively, as compared \nto the standard drug thiourea (IC50 = 21.6 ± 0.12 μm). Compounds 4, 5 and 6 showed good chymotrypsin activity with IC50 values of \n6.4 ± 0.19, 15.6 ± 0.46 and 18.4 ± 0.65 μm, respectively, as compared to standard chymostatin \nwith IC50 = 5.7 ± 0.14 μm. These transformed metabolites may form the basis for the future \ndevelopment of new drugs against ulcer, inflammation, bacterial and viral \ndiseases.","PeriodicalId":59114,"journal":{"name":"生物化学进展(英文)","volume":"11 1","pages":"65-77"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusarium lini Potential for the Biotransformation of Norandrostenedione and Evaluation of Urease and Chymotrypsin Properties of the Transformed Products\",\"authors\":\"S. P. Fodouop, Alex Doris Kengni Mboussaah, Didiane Yemele Mefokou, A. Fowa, Mahwish Siddiqui, G. T. Kamsu, D. Gatsing, M. Choudhary\",\"doi\":\"10.4236/ABC.2021.112006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several androgenic steroids have been biotransformed \\nby fungi into metabolites with numerous biological properties. Incubation of \\nnorandrostenedione (1) with Fusarium lini NRRL 2204 was carried out for the first time, yielding two new \\nmetabolites, 3,7β-dihydroxy-19-norandrost-1,3,5-trien-17-one (3) and 6α,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with three known compounds, 3-hydroxy-19-norandrost-1,3,5-trien-17-one \\n(2), 10β, 17β-dihydroxy-19-nor-4-androsten-3-one (5) and 10β-hydroxy-19-nor-4- androsten-3,17-dione (6). Their structures were elucidated by extensive \\nspectroscopic analyses, including 1D-, 2D-NMR, and HR-MS experiments. Substrate 1 and its derivatives 2-6 were evaluated in vitro for their urease and chymotrypsin inhibitory properties. \\nCompounds 2 and 3 were found to have strong urease activity with \\nIC50 = 23.7 ± 0.17 and 10.2 ± 0.28 μm, respectively, as compared \\nto the standard drug thiourea (IC50 = 21.6 ± 0.12 μm). Compounds 4, 5 and 6 showed good chymotrypsin activity with IC50 values of \\n6.4 ± 0.19, 15.6 ± 0.46 and 18.4 ± 0.65 μm, respectively, as compared to standard chymostatin \\nwith IC50 = 5.7 ± 0.14 μm. These transformed metabolites may form the basis for the future \\ndevelopment of new drugs against ulcer, inflammation, bacterial and viral \\ndiseases.\",\"PeriodicalId\":59114,\"journal\":{\"name\":\"生物化学进展(英文)\",\"volume\":\"11 1\",\"pages\":\"65-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物化学进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ABC.2021.112006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物化学进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ABC.2021.112006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusarium lini Potential for the Biotransformation of Norandrostenedione and Evaluation of Urease and Chymotrypsin Properties of the Transformed Products
Several androgenic steroids have been biotransformed
by fungi into metabolites with numerous biological properties. Incubation of
norandrostenedione (1) with Fusarium lini NRRL 2204 was carried out for the first time, yielding two new
metabolites, 3,7β-dihydroxy-19-norandrost-1,3,5-trien-17-one (3) and 6α,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with three known compounds, 3-hydroxy-19-norandrost-1,3,5-trien-17-one
(2), 10β, 17β-dihydroxy-19-nor-4-androsten-3-one (5) and 10β-hydroxy-19-nor-4- androsten-3,17-dione (6). Their structures were elucidated by extensive
spectroscopic analyses, including 1D-, 2D-NMR, and HR-MS experiments. Substrate 1 and its derivatives 2-6 were evaluated in vitro for their urease and chymotrypsin inhibitory properties.
Compounds 2 and 3 were found to have strong urease activity with
IC50 = 23.7 ± 0.17 and 10.2 ± 0.28 μm, respectively, as compared
to the standard drug thiourea (IC50 = 21.6 ± 0.12 μm). Compounds 4, 5 and 6 showed good chymotrypsin activity with IC50 values of
6.4 ± 0.19, 15.6 ± 0.46 and 18.4 ± 0.65 μm, respectively, as compared to standard chymostatin
with IC50 = 5.7 ± 0.14 μm. These transformed metabolites may form the basis for the future
development of new drugs against ulcer, inflammation, bacterial and viral
diseases.