利用脑信号生成具有可重复性的独特的基于生物特征的密码密钥的开发

M. Zeynali, Hadi Seyedarabi, B. M. Tazehkand
{"title":"利用脑信号生成具有可重复性的独特的基于生物特征的密码密钥的开发","authors":"M. Zeynali, Hadi Seyedarabi, B. M. Tazehkand","doi":"10.22044/JADM.2020.7858.1923","DOIUrl":null,"url":null,"abstract":"Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be used as a cryptographic key. This paper proposes a new method for decreasing the error of EEG- based key generation process. Discrete Fourier Transform, Discrete Wavelet Transform, Autoregressive Modeling, Energy Entropy, and Sample Entropy were used to extract features. All features are used as the input of new method based on window segmentation protocol then are converted to the binary mode. We obtain 0.76%, and 0.48% mean Half Total Error Rate (HTER) for 18-channel and single-channel cryptographic key generation systems respectively.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a Unique Biometric-based Cryptographic Key Generation with Repeatability using Brain Signals\",\"authors\":\"M. Zeynali, Hadi Seyedarabi, B. M. Tazehkand\",\"doi\":\"10.22044/JADM.2020.7858.1923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be used as a cryptographic key. This paper proposes a new method for decreasing the error of EEG- based key generation process. Discrete Fourier Transform, Discrete Wavelet Transform, Autoregressive Modeling, Energy Entropy, and Sample Entropy were used to extract features. All features are used as the input of new method based on window segmentation protocol then are converted to the binary mode. We obtain 0.76%, and 0.48% mean Half Total Error Rate (HTER) for 18-channel and single-channel cryptographic key generation systems respectively.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2020.7858.1923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.7858.1923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当通过网络发送机密数据时,网络安全非常重要。密码学是一门隐藏信息的科学,密码学解决方案与认知科学的结合开创了一个新的分支——认知密码学,它保证了数据的机密性和完整性。作为生物特征指示器的大脑信号可以转换成二进制代码,二进制代码可以用作加密密钥。提出了一种减少基于脑电的密钥生成过程误差的新方法。采用离散傅立叶变换、离散小波变换、自回归建模、能量熵和样本熵等方法提取特征。将所有特征作为基于窗口分割协议的新方法的输入,然后将其转换为二进制模式。我们得到18通道和单通道密码密钥生成系统的平均半总错误率(HTER)分别为0.76%和0.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Unique Biometric-based Cryptographic Key Generation with Repeatability using Brain Signals
Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be used as a cryptographic key. This paper proposes a new method for decreasing the error of EEG- based key generation process. Discrete Fourier Transform, Discrete Wavelet Transform, Autoregressive Modeling, Energy Entropy, and Sample Entropy were used to extract features. All features are used as the input of new method based on window segmentation protocol then are converted to the binary mode. We obtain 0.76%, and 0.48% mean Half Total Error Rate (HTER) for 18-channel and single-channel cryptographic key generation systems respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1