Dongbiao Jin, Houjuan Mao, Jie Xiao, Huanhuan Zhang, M. Woo, Xiao Dong Chen, N. Fu
{"title":"模拟乳酸菌在喷雾干燥机中的失活动力学","authors":"Dongbiao Jin, Houjuan Mao, Jie Xiao, Huanhuan Zhang, M. Woo, Xiao Dong Chen, N. Fu","doi":"10.1080/07373937.2023.2245891","DOIUrl":null,"url":null,"abstract":"Abstract Changes in the viability of probiotic cells during spray drying were tracked, by developing an inactivation model of Lactobacillus rhamnosus GG (LGG) and coupling the model to the drying kinetics of spray drying using Computational Fluid Dynamics simulation. Six inactivation models in the Arrhenius-equation form were developed using single droplet drying experiments with average drying rates of 0.011–0.044 kg/kg/s; all gave reliable goodness-of-fit. In simulating spray drying process, the predicted moisture content of LGG-containing particles well followed experimental trends. However, only inactivation model 6, which incorporated droplet temperature, moisture content, rate of temperature change, and drying rate, accurately predicted the survival of LGG. Models 1–5 that incorporated fewer kinetics parameters with higher activation energy values underestimated the degree of inactivation. The findings highlighted the crucial effects of the rates of temperature and moisture content change on the inactivation of probiotics during rapid drying with average drying rates of 0.31–0.81 kg/kg/s.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the inactivation kinetics of lactic acid bacteria in a spray dryer\",\"authors\":\"Dongbiao Jin, Houjuan Mao, Jie Xiao, Huanhuan Zhang, M. Woo, Xiao Dong Chen, N. Fu\",\"doi\":\"10.1080/07373937.2023.2245891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Changes in the viability of probiotic cells during spray drying were tracked, by developing an inactivation model of Lactobacillus rhamnosus GG (LGG) and coupling the model to the drying kinetics of spray drying using Computational Fluid Dynamics simulation. Six inactivation models in the Arrhenius-equation form were developed using single droplet drying experiments with average drying rates of 0.011–0.044 kg/kg/s; all gave reliable goodness-of-fit. In simulating spray drying process, the predicted moisture content of LGG-containing particles well followed experimental trends. However, only inactivation model 6, which incorporated droplet temperature, moisture content, rate of temperature change, and drying rate, accurately predicted the survival of LGG. Models 1–5 that incorporated fewer kinetics parameters with higher activation energy values underestimated the degree of inactivation. The findings highlighted the crucial effects of the rates of temperature and moisture content change on the inactivation of probiotics during rapid drying with average drying rates of 0.31–0.81 kg/kg/s.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2245891\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2245891","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Modeling the inactivation kinetics of lactic acid bacteria in a spray dryer
Abstract Changes in the viability of probiotic cells during spray drying were tracked, by developing an inactivation model of Lactobacillus rhamnosus GG (LGG) and coupling the model to the drying kinetics of spray drying using Computational Fluid Dynamics simulation. Six inactivation models in the Arrhenius-equation form were developed using single droplet drying experiments with average drying rates of 0.011–0.044 kg/kg/s; all gave reliable goodness-of-fit. In simulating spray drying process, the predicted moisture content of LGG-containing particles well followed experimental trends. However, only inactivation model 6, which incorporated droplet temperature, moisture content, rate of temperature change, and drying rate, accurately predicted the survival of LGG. Models 1–5 that incorporated fewer kinetics parameters with higher activation energy values underestimated the degree of inactivation. The findings highlighted the crucial effects of the rates of temperature and moisture content change on the inactivation of probiotics during rapid drying with average drying rates of 0.31–0.81 kg/kg/s.
期刊介绍:
Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics.
Articles in this multi-disciplinary journal cover the following themes:
-Fundamental and applied aspects of dryers in diverse industrial sectors-
Mathematical modeling of drying and dryers-
Computer modeling of transport processes in multi-phase systems-
Material science aspects of drying-
Transport phenomena in porous media-
Design, scale-up, control and off-design analysis of dryers-
Energy, environmental, safety and techno-economic aspects-
Quality parameters in drying operations-
Pre- and post-drying operations-
Novel drying technologies.
This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.