基于集成电路的脑电诊断元框架

Susan Waleed Mohammed Al-Bayati, R. Asgarnezhad, Karrar Ali Mohsin Alhameedawi
{"title":"基于集成电路的脑电诊断元框架","authors":"Susan Waleed Mohammed Al-Bayati, R. Asgarnezhad, Karrar Ali Mohsin Alhameedawi","doi":"10.21817/indjcse/2023/v14i3/231403137","DOIUrl":null,"url":null,"abstract":"It enables people to communicate with computers by using their brains. Electroencephalography (EEG) data are often used to quantify this sort of activity. A general time series problem for recognizing human cognitive states is eye state classification. Knowing human cognitive states can be quite useful for therapeutic applications in our daily life. Analyses that are both subject-dependent and independent are used to classify the current ocular states. In subject-dependent classification, the model is trained using data from a subject. Subject-specific categorization, however, is exempt from this requirement. There are issues with the EEG data because of noise and muscle activity. This study suggested a categorization approach that employs a separate pre-processing stage. In this context, the basis classifiers and the most significant studies are compared to the ensemble techniques used in the classification step. A publicly accessible EEG eye state dataset from UCI is used for evaluation. The results are 96.99%.","PeriodicalId":52250,"journal":{"name":"Indian Journal of Computer Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A META-FRAMEWORK USING ENSEMBLES FOR EEG DIAGNOSIS\",\"authors\":\"Susan Waleed Mohammed Al-Bayati, R. Asgarnezhad, Karrar Ali Mohsin Alhameedawi\",\"doi\":\"10.21817/indjcse/2023/v14i3/231403137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It enables people to communicate with computers by using their brains. Electroencephalography (EEG) data are often used to quantify this sort of activity. A general time series problem for recognizing human cognitive states is eye state classification. Knowing human cognitive states can be quite useful for therapeutic applications in our daily life. Analyses that are both subject-dependent and independent are used to classify the current ocular states. In subject-dependent classification, the model is trained using data from a subject. Subject-specific categorization, however, is exempt from this requirement. There are issues with the EEG data because of noise and muscle activity. This study suggested a categorization approach that employs a separate pre-processing stage. In this context, the basis classifiers and the most significant studies are compared to the ensemble techniques used in the classification step. A publicly accessible EEG eye state dataset from UCI is used for evaluation. The results are 96.99%.\",\"PeriodicalId\":52250,\"journal\":{\"name\":\"Indian Journal of Computer Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21817/indjcse/2023/v14i3/231403137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21817/indjcse/2023/v14i3/231403137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

它使人们能够通过大脑与计算机进行交流。脑电图(EEG)数据经常被用来量化这类活动。识别人类认知状态的一般时间序列问题是眼状态分类。了解人类的认知状态对我们日常生活中的治疗应用非常有用。对当前的眼部状态进行分类时,使用的分析既有主体依赖性的,也有独立性的。在主题相关分类中,使用来自主题的数据训练模型。但是,特定主题的分类不受此要求的限制。由于噪声和肌肉活动,脑电图数据存在问题。本研究提出了一种采用单独预处理阶段的分类方法。在这种情况下,将基础分类器和最重要的研究与分类步骤中使用的集成技术进行比较。使用来自UCI的公开访问的EEG眼状态数据集进行评估。结果为96.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A META-FRAMEWORK USING ENSEMBLES FOR EEG DIAGNOSIS
It enables people to communicate with computers by using their brains. Electroencephalography (EEG) data are often used to quantify this sort of activity. A general time series problem for recognizing human cognitive states is eye state classification. Knowing human cognitive states can be quite useful for therapeutic applications in our daily life. Analyses that are both subject-dependent and independent are used to classify the current ocular states. In subject-dependent classification, the model is trained using data from a subject. Subject-specific categorization, however, is exempt from this requirement. There are issues with the EEG data because of noise and muscle activity. This study suggested a categorization approach that employs a separate pre-processing stage. In this context, the basis classifiers and the most significant studies are compared to the ensemble techniques used in the classification step. A publicly accessible EEG eye state dataset from UCI is used for evaluation. The results are 96.99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Computer Science and Engineering
Indian Journal of Computer Science and Engineering Engineering-Engineering (miscellaneous)
自引率
0.00%
发文量
146
期刊最新文献
FEATURE SELECTION AND CLASSIFICATION FOR MICROARRAY DATA USING UPGRADE CHI-SQUARE TEST ENHANCING PERFORMANCE OF TRAFFIC CLASSIFICATION WITH FEATURE SELECTION METHODS MACHINE LEARNING MODELS FOR HEART DISEASE PREDICTION-A REVIEW A DEEP LEARNING MODEL IMPLEMENTATION OF TABNET FOR PREDICTING PEPTIDE-PROTEIN INTERACTION IN CANCER EXPLORING MALARIA DISEASE BIOMARKERS: AN INTEGRATED APPROACH USING NETWORK TOPOLOGY AND ENRICHMENT ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1