Shun Wang, Yongbo Li, Jiacong Zhang, Zheng Liu, Zichen Deng
{"title":"基于符号尺度多样性熵的特征提取方法及其在旋转机械故障诊断中的应用","authors":"Shun Wang, Yongbo Li, Jiacong Zhang, Zheng Liu, Zichen Deng","doi":"10.1177/14759217231186357","DOIUrl":null,"url":null,"abstract":"Multiscale entropy-based methods have made great progress in the field of health condition monitoring and fault diagnosis of machines due to their powerful feature representation capabilities. However, existing multiscale entropy methods suffer from three major obstacles: high fluctuation under large scale-factor, loss of high-frequency information, and poor robustness to noises. Thus, this work proposes a symbol-scale analysis method to deal with the above problems. In one aspect, to capture fault features from the time series over multiple time scales, time-delay process of different intervals is utilized to obtain long-term features and short-term features. In the other aspect, symbol-scale analysis introduces a symbolization procedure and maps time series into a corresponding sequence of symbols to overcome the limitation of weak fault extraction under a low-signal-to-noise ratio environment. Moreover, the symbol-scale entropy approach is developed by integrating with diversity entropy, called symbol-scale diversity entropy. The effectiveness of the proposed strategy is intensively validated using two simulated signals and experimental cases. Results demonstrate its advantages in dynamic change tracking ability and calculation efficiency by comparing it with other state-of-the-art entropy methods. Apart from diversity entropy, the versatility of incorporating the proposed symbol-scale analysis and other entropy methods is also verified using experimental data.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel feature extraction method based on symbol-scale diversity entropy and its application for fault diagnosis of rotary machines\",\"authors\":\"Shun Wang, Yongbo Li, Jiacong Zhang, Zheng Liu, Zichen Deng\",\"doi\":\"10.1177/14759217231186357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale entropy-based methods have made great progress in the field of health condition monitoring and fault diagnosis of machines due to their powerful feature representation capabilities. However, existing multiscale entropy methods suffer from three major obstacles: high fluctuation under large scale-factor, loss of high-frequency information, and poor robustness to noises. Thus, this work proposes a symbol-scale analysis method to deal with the above problems. In one aspect, to capture fault features from the time series over multiple time scales, time-delay process of different intervals is utilized to obtain long-term features and short-term features. In the other aspect, symbol-scale analysis introduces a symbolization procedure and maps time series into a corresponding sequence of symbols to overcome the limitation of weak fault extraction under a low-signal-to-noise ratio environment. Moreover, the symbol-scale entropy approach is developed by integrating with diversity entropy, called symbol-scale diversity entropy. The effectiveness of the proposed strategy is intensively validated using two simulated signals and experimental cases. Results demonstrate its advantages in dynamic change tracking ability and calculation efficiency by comparing it with other state-of-the-art entropy methods. Apart from diversity entropy, the versatility of incorporating the proposed symbol-scale analysis and other entropy methods is also verified using experimental data.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231186357\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231186357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel feature extraction method based on symbol-scale diversity entropy and its application for fault diagnosis of rotary machines
Multiscale entropy-based methods have made great progress in the field of health condition monitoring and fault diagnosis of machines due to their powerful feature representation capabilities. However, existing multiscale entropy methods suffer from three major obstacles: high fluctuation under large scale-factor, loss of high-frequency information, and poor robustness to noises. Thus, this work proposes a symbol-scale analysis method to deal with the above problems. In one aspect, to capture fault features from the time series over multiple time scales, time-delay process of different intervals is utilized to obtain long-term features and short-term features. In the other aspect, symbol-scale analysis introduces a symbolization procedure and maps time series into a corresponding sequence of symbols to overcome the limitation of weak fault extraction under a low-signal-to-noise ratio environment. Moreover, the symbol-scale entropy approach is developed by integrating with diversity entropy, called symbol-scale diversity entropy. The effectiveness of the proposed strategy is intensively validated using two simulated signals and experimental cases. Results demonstrate its advantages in dynamic change tracking ability and calculation efficiency by comparing it with other state-of-the-art entropy methods. Apart from diversity entropy, the versatility of incorporating the proposed symbol-scale analysis and other entropy methods is also verified using experimental data.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.