细菌相互作用影响化疗效果

Jenni Chambers, T. A. Illingworth
{"title":"细菌相互作用影响化疗效果","authors":"Jenni Chambers, T. A. Illingworth","doi":"10.26443/msurj.v18i1.190","DOIUrl":null,"url":null,"abstract":"Chemotherapy resistance is a recurring challenge in cancer treatment, with specific bacteria impairing the effectiveness of certain chemotherapies. This study reviews three bacteria and their impact on chemotherapy drugs: Mycoplasma  and gemcitabine, Fusobacterium nucleatum and oxaliplatin, bacterial β-glucuronase and irinotecan. Bacteria can have wide-ranging effects on cancer treatment; for instance, they may affect drug metabolism, alter toxin conversion, and encourage cancer growth. Whilst the presence of these bacteria was found to have a detrimental effect on the efficacy of chemotherapy treatment, we also consider wider interactions and interdependencies of the microbiota with drug treatments. Some cancer therapies depend on the delicate balance of the microbiome whilst simultaneously disrupting it by their very nature, particularly when antibiotics are introduced. Further research into the complex relationship between bacteria and the tumour micro-environment is needed. Treatments that focus on the immune-oncology microbiome axis or that explore genetic predisposition through the use of biomarkers could also support a more personalised approach.","PeriodicalId":91927,"journal":{"name":"McGill Science undergraduate research journal : MSURJ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial Interactions Affecting Chemotherapy Effectiveness\",\"authors\":\"Jenni Chambers, T. A. Illingworth\",\"doi\":\"10.26443/msurj.v18i1.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemotherapy resistance is a recurring challenge in cancer treatment, with specific bacteria impairing the effectiveness of certain chemotherapies. This study reviews three bacteria and their impact on chemotherapy drugs: Mycoplasma  and gemcitabine, Fusobacterium nucleatum and oxaliplatin, bacterial β-glucuronase and irinotecan. Bacteria can have wide-ranging effects on cancer treatment; for instance, they may affect drug metabolism, alter toxin conversion, and encourage cancer growth. Whilst the presence of these bacteria was found to have a detrimental effect on the efficacy of chemotherapy treatment, we also consider wider interactions and interdependencies of the microbiota with drug treatments. Some cancer therapies depend on the delicate balance of the microbiome whilst simultaneously disrupting it by their very nature, particularly when antibiotics are introduced. Further research into the complex relationship between bacteria and the tumour micro-environment is needed. Treatments that focus on the immune-oncology microbiome axis or that explore genetic predisposition through the use of biomarkers could also support a more personalised approach.\",\"PeriodicalId\":91927,\"journal\":{\"name\":\"McGill Science undergraduate research journal : MSURJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"McGill Science undergraduate research journal : MSURJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26443/msurj.v18i1.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"McGill Science undergraduate research journal : MSURJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26443/msurj.v18i1.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化疗耐药是癌症治疗中反复出现的挑战,特定细菌会损害某些化疗的有效性。本研究综述了支原体和吉西他滨、核梭杆菌和奥沙利铂、细菌β-葡糖苷酶和伊立替康三种细菌及其对化疗药物的影响。细菌对癌症治疗有广泛的影响;例如,它们可能影响药物代谢,改变毒素转化,并促进癌症生长。虽然发现这些细菌的存在对化疗的疗效有不利影响,但我们也考虑了微生物群与药物治疗的更广泛的相互作用和相互依赖性。一些癌症治疗依赖于微生物群的微妙平衡,同时由于其本身的性质而破坏它,特别是在引入抗生素时。需要进一步研究细菌与肿瘤微环境之间的复杂关系。专注于免疫肿瘤学微生物组轴或通过使用生物标志物探索遗传易感性的治疗也可以支持更个性化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacterial Interactions Affecting Chemotherapy Effectiveness
Chemotherapy resistance is a recurring challenge in cancer treatment, with specific bacteria impairing the effectiveness of certain chemotherapies. This study reviews three bacteria and their impact on chemotherapy drugs: Mycoplasma  and gemcitabine, Fusobacterium nucleatum and oxaliplatin, bacterial β-glucuronase and irinotecan. Bacteria can have wide-ranging effects on cancer treatment; for instance, they may affect drug metabolism, alter toxin conversion, and encourage cancer growth. Whilst the presence of these bacteria was found to have a detrimental effect on the efficacy of chemotherapy treatment, we also consider wider interactions and interdependencies of the microbiota with drug treatments. Some cancer therapies depend on the delicate balance of the microbiome whilst simultaneously disrupting it by their very nature, particularly when antibiotics are introduced. Further research into the complex relationship between bacteria and the tumour micro-environment is needed. Treatments that focus on the immune-oncology microbiome axis or that explore genetic predisposition through the use of biomarkers could also support a more personalised approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Iron in Epidermal Healing and Infection At Once Friends and Foes Enduring Controversial Story in the Human Brain Rho GTPase regulatory proteins contribute to podocyte morphology and function Uncovering the Regulators of CRISPR-Cas Immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1