降水是美国亚利桑那州中部索诺兰沙漠东北部构造不活跃地区侵蚀率的关键控制因素

IF 1.1 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Physical Geography Pub Date : 2023-09-05 DOI:10.1080/02723646.2023.2251654
A. Jeong, Y. Seong, Ronald I. Dorn, Byung Yong Yu
{"title":"降水是美国亚利桑那州中部索诺兰沙漠东北部构造不活跃地区侵蚀率的关键控制因素","authors":"A. Jeong, Y. Seong, Ronald I. Dorn, Byung Yong Yu","doi":"10.1080/02723646.2023.2251654","DOIUrl":null,"url":null,"abstract":"Langbein and Schumm (1958) connected precipitation to erosion in a right-skewed curve used in earth science textbooks for over six decades, where denudation increases with precipitation on the arid/semiarid limb and decreases in humid regions. Development of the catchment-averaged 10 Be denudation method a quarter-century ago led geomorphologists to evaluate this hypothesis using data not influenced by the Anthropocene, with mixed findings. The Sonoran Desert in Arizona, USA, is optimal for investigating the longstanding hypothesis of increased erosion from arid to semiarid climates due to: (i) the modern orographic effect aligning elevated precipitation with altitude, mirroring Neotoma packrat midden paleoecology research for the Holocene and late Pleistocene; (ii) the region has been tectonically quiet for the residence times of analyzed 10 Be ranging from ca. 8,000-110,000 years. Our significant finding echoes Langbein and Schumm's work, revealing heightened erosion along an elevation-precipitation gradient from arid to semiarid conditions. Notably, the significance of precipitation-elevation contrasts with the absence of significant correlation between 10 Be denudation and attributes like slope, drainage area, relief, or landform type (e.g., alluvial fan, pediment, mountain watershed). Modern faunalturbation, increasing along this gradient, exposes more ground to rainsplash and overland flow at higher elevations, adding complexity to these results. Further insights unveil that (i) catchments in areas with substantial Quaternary base level reduction imitate tectonic effects, tripling 10 Be denudation rates; (ii) basaltic boulders and cobbles yield an armoring influence; (iii) historical erosion acceleration due to urbanization and wildfires insignificantly affects 10 Be denudation rates in the Sonoran Desert; and (iv) minute desert catchments yield anomalous erosion rates.","PeriodicalId":54618,"journal":{"name":"Physical Geography","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation as a key control on erosion rates in the tectonically inactive northeastern Sonoran Desert, central Arizona, USA\",\"authors\":\"A. Jeong, Y. Seong, Ronald I. Dorn, Byung Yong Yu\",\"doi\":\"10.1080/02723646.2023.2251654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Langbein and Schumm (1958) connected precipitation to erosion in a right-skewed curve used in earth science textbooks for over six decades, where denudation increases with precipitation on the arid/semiarid limb and decreases in humid regions. Development of the catchment-averaged 10 Be denudation method a quarter-century ago led geomorphologists to evaluate this hypothesis using data not influenced by the Anthropocene, with mixed findings. The Sonoran Desert in Arizona, USA, is optimal for investigating the longstanding hypothesis of increased erosion from arid to semiarid climates due to: (i) the modern orographic effect aligning elevated precipitation with altitude, mirroring Neotoma packrat midden paleoecology research for the Holocene and late Pleistocene; (ii) the region has been tectonically quiet for the residence times of analyzed 10 Be ranging from ca. 8,000-110,000 years. Our significant finding echoes Langbein and Schumm's work, revealing heightened erosion along an elevation-precipitation gradient from arid to semiarid conditions. Notably, the significance of precipitation-elevation contrasts with the absence of significant correlation between 10 Be denudation and attributes like slope, drainage area, relief, or landform type (e.g., alluvial fan, pediment, mountain watershed). Modern faunalturbation, increasing along this gradient, exposes more ground to rainsplash and overland flow at higher elevations, adding complexity to these results. Further insights unveil that (i) catchments in areas with substantial Quaternary base level reduction imitate tectonic effects, tripling 10 Be denudation rates; (ii) basaltic boulders and cobbles yield an armoring influence; (iii) historical erosion acceleration due to urbanization and wildfires insignificantly affects 10 Be denudation rates in the Sonoran Desert; and (iv) minute desert catchments yield anomalous erosion rates.\",\"PeriodicalId\":54618,\"journal\":{\"name\":\"Physical Geography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/02723646.2023.2251654\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/02723646.2023.2251654","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precipitation as a key control on erosion rates in the tectonically inactive northeastern Sonoran Desert, central Arizona, USA
Langbein and Schumm (1958) connected precipitation to erosion in a right-skewed curve used in earth science textbooks for over six decades, where denudation increases with precipitation on the arid/semiarid limb and decreases in humid regions. Development of the catchment-averaged 10 Be denudation method a quarter-century ago led geomorphologists to evaluate this hypothesis using data not influenced by the Anthropocene, with mixed findings. The Sonoran Desert in Arizona, USA, is optimal for investigating the longstanding hypothesis of increased erosion from arid to semiarid climates due to: (i) the modern orographic effect aligning elevated precipitation with altitude, mirroring Neotoma packrat midden paleoecology research for the Holocene and late Pleistocene; (ii) the region has been tectonically quiet for the residence times of analyzed 10 Be ranging from ca. 8,000-110,000 years. Our significant finding echoes Langbein and Schumm's work, revealing heightened erosion along an elevation-precipitation gradient from arid to semiarid conditions. Notably, the significance of precipitation-elevation contrasts with the absence of significant correlation between 10 Be denudation and attributes like slope, drainage area, relief, or landform type (e.g., alluvial fan, pediment, mountain watershed). Modern faunalturbation, increasing along this gradient, exposes more ground to rainsplash and overland flow at higher elevations, adding complexity to these results. Further insights unveil that (i) catchments in areas with substantial Quaternary base level reduction imitate tectonic effects, tripling 10 Be denudation rates; (ii) basaltic boulders and cobbles yield an armoring influence; (iii) historical erosion acceleration due to urbanization and wildfires insignificantly affects 10 Be denudation rates in the Sonoran Desert; and (iv) minute desert catchments yield anomalous erosion rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Geography
Physical Geography 地学-地球科学综合
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
6 months
期刊介绍: Physical Geography disseminates significant research in the environmental sciences, including research that integrates environmental processes and human activities. It publishes original papers devoted to research in climatology, geomorphology, hydrology, biogeography, soil science, human-environment interactions, and research methods in physical geography, and welcomes original contributions on topics at the intersection of two or more of these categories.
期刊最新文献
Rainfall analysis of the May 2021 southeastern Texas and southern Louisiana flood Tectonic controls on the morphometry of alluvial fans in an arid region, northeast Iran Assessment of geomorphic status and recovery potential in anthropogenically altered river of Eastern India Temporal change in channel form and hydraulic behaviour of a tropical river due to natural forcing and anthropogenic interventions On the attribution of changes in streamflow conditions to climate variability in North Carolina Piedmont, United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1