{"title":"介电技术与人工神经网络和支持向量回归相结合预测橄榄含水量","authors":"Mahdi Rashvand, M. Firouz","doi":"10.17221/13/2019-rae","DOIUrl":null,"url":null,"abstract":"Olives are one of the most important agriculture crops in the world, which are harvested in different stages of growth for various uses. One of the ways to detect the adequate time to process the olives is to determine their moisture content. In this study, to determine the moisture content of olives, a dielectric technique was used in seven periods of harvesting and three different varieties of olive including Oily, Mary and Fishemi. The dielectric properties of the olive fruits were measured using an electronic device in the range of 0.1–30 MHz. Artificial Neural Network (ANN) and Support Vector Regression (SVR) methods were applied to develop the prediction models by using the obtained data acquired by the system. The best results (R = 0.999 and MSE = 0.014) were obtained by the ANN model with a topology of 384–12–1 (384 features in the input vector, 12 neurons in the hidden layer and 1 output). The results obtained indicated the acceptable accuracy of the dielectric technique combined with the ANN model.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":"66 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/13/2019-rae","citationCount":"1","resultStr":"{\"title\":\"Dielectric technique combined with artificial neural network and support vector regression in moisture content prediction of olive\",\"authors\":\"Mahdi Rashvand, M. Firouz\",\"doi\":\"10.17221/13/2019-rae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Olives are one of the most important agriculture crops in the world, which are harvested in different stages of growth for various uses. One of the ways to detect the adequate time to process the olives is to determine their moisture content. In this study, to determine the moisture content of olives, a dielectric technique was used in seven periods of harvesting and three different varieties of olive including Oily, Mary and Fishemi. The dielectric properties of the olive fruits were measured using an electronic device in the range of 0.1–30 MHz. Artificial Neural Network (ANN) and Support Vector Regression (SVR) methods were applied to develop the prediction models by using the obtained data acquired by the system. The best results (R = 0.999 and MSE = 0.014) were obtained by the ANN model with a topology of 384–12–1 (384 features in the input vector, 12 neurons in the hidden layer and 1 output). The results obtained indicated the acceptable accuracy of the dielectric technique combined with the ANN model.\",\"PeriodicalId\":20906,\"journal\":{\"name\":\"Research in Agricultural Engineering\",\"volume\":\"66 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/13/2019-rae\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17221/13/2019-rae\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/13/2019-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Dielectric technique combined with artificial neural network and support vector regression in moisture content prediction of olive
Olives are one of the most important agriculture crops in the world, which are harvested in different stages of growth for various uses. One of the ways to detect the adequate time to process the olives is to determine their moisture content. In this study, to determine the moisture content of olives, a dielectric technique was used in seven periods of harvesting and three different varieties of olive including Oily, Mary and Fishemi. The dielectric properties of the olive fruits were measured using an electronic device in the range of 0.1–30 MHz. Artificial Neural Network (ANN) and Support Vector Regression (SVR) methods were applied to develop the prediction models by using the obtained data acquired by the system. The best results (R = 0.999 and MSE = 0.014) were obtained by the ANN model with a topology of 384–12–1 (384 features in the input vector, 12 neurons in the hidden layer and 1 output). The results obtained indicated the acceptable accuracy of the dielectric technique combined with the ANN model.
期刊介绍:
Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.