I. Myasnikov, G. Artemiev, E. Lavrinovich, I. Kazinskaya, Alexander Novikov, A. V. Safonov
{"title":"用于硝酸盐和锕系元素污染地下水原位生物修复的简单和复杂底物(糖、醋酸盐和乳清)","authors":"I. Myasnikov, G. Artemiev, E. Lavrinovich, I. Kazinskaya, Alexander Novikov, A. V. Safonov","doi":"10.3390/hydrology10080175","DOIUrl":null,"url":null,"abstract":"The complex contamination of groundwater near radioactive waste repositories by nitrates and actinides is a common problem for many nuclear fuel cycle facilities. One of the effective methods to remove nitrates and reduce actinide migration activity is bioremediation through the activation of native microbial communities by soluble electron donors and carbon sources. This work evaluated the effectiveness of using simple and complex electron donors to remove nitrate in the microbial community in an aquifer near the B2 storage of the Siberian Chemical Combine (Seversk, Siberia). The addition of sugar and milk whey led to the maximum efficiency of nitrate-ion removal and a decrease in the redox potential of the system, creating optimal conditions for the immobilization of actinide. Special attention was paid to the behavior of uranium, plutonium, neptunium, and americium under conditions simulating groundwater when sugar, acetate, and milk whey were added and when microbial metabolic products were formed. Neither microbial metabolites nor organic solutions were found to have a significant effect on the leaching of neptunium. At the same time, for plutonium, a decrease in yield was observed when rocks were treated with organic solutions were compared to groundwater treatment without them. Plutonium leaching is significantly affected by rock composition. In rocks with a low clay fraction content, its yield can reach 40%. At the same time, microbial metabolites can increase americium (Am) desorption from rocks with a low clay fraction content. Additionally, particle size analysis was performed using a step-by-step filtration approach, aiming to evaluate the risks that are associated with colloidal phase formation. It was shown that microbiological stimulation resulted in particle enlargement, substantially diminishing the presence of actinides in the form of dissolved or sub-50 nm nanoparticles. This outcome significantly reduced the potential for colloidal and pseudocolloidal transfer, thereby lowering associated risks.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination\",\"authors\":\"I. Myasnikov, G. Artemiev, E. Lavrinovich, I. Kazinskaya, Alexander Novikov, A. V. Safonov\",\"doi\":\"10.3390/hydrology10080175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex contamination of groundwater near radioactive waste repositories by nitrates and actinides is a common problem for many nuclear fuel cycle facilities. One of the effective methods to remove nitrates and reduce actinide migration activity is bioremediation through the activation of native microbial communities by soluble electron donors and carbon sources. This work evaluated the effectiveness of using simple and complex electron donors to remove nitrate in the microbial community in an aquifer near the B2 storage of the Siberian Chemical Combine (Seversk, Siberia). The addition of sugar and milk whey led to the maximum efficiency of nitrate-ion removal and a decrease in the redox potential of the system, creating optimal conditions for the immobilization of actinide. Special attention was paid to the behavior of uranium, plutonium, neptunium, and americium under conditions simulating groundwater when sugar, acetate, and milk whey were added and when microbial metabolic products were formed. Neither microbial metabolites nor organic solutions were found to have a significant effect on the leaching of neptunium. At the same time, for plutonium, a decrease in yield was observed when rocks were treated with organic solutions were compared to groundwater treatment without them. Plutonium leaching is significantly affected by rock composition. In rocks with a low clay fraction content, its yield can reach 40%. At the same time, microbial metabolites can increase americium (Am) desorption from rocks with a low clay fraction content. Additionally, particle size analysis was performed using a step-by-step filtration approach, aiming to evaluate the risks that are associated with colloidal phase formation. It was shown that microbiological stimulation resulted in particle enlargement, substantially diminishing the presence of actinides in the form of dissolved or sub-50 nm nanoparticles. This outcome significantly reduced the potential for colloidal and pseudocolloidal transfer, thereby lowering associated risks.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10080175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination
The complex contamination of groundwater near radioactive waste repositories by nitrates and actinides is a common problem for many nuclear fuel cycle facilities. One of the effective methods to remove nitrates and reduce actinide migration activity is bioremediation through the activation of native microbial communities by soluble electron donors and carbon sources. This work evaluated the effectiveness of using simple and complex electron donors to remove nitrate in the microbial community in an aquifer near the B2 storage of the Siberian Chemical Combine (Seversk, Siberia). The addition of sugar and milk whey led to the maximum efficiency of nitrate-ion removal and a decrease in the redox potential of the system, creating optimal conditions for the immobilization of actinide. Special attention was paid to the behavior of uranium, plutonium, neptunium, and americium under conditions simulating groundwater when sugar, acetate, and milk whey were added and when microbial metabolic products were formed. Neither microbial metabolites nor organic solutions were found to have a significant effect on the leaching of neptunium. At the same time, for plutonium, a decrease in yield was observed when rocks were treated with organic solutions were compared to groundwater treatment without them. Plutonium leaching is significantly affected by rock composition. In rocks with a low clay fraction content, its yield can reach 40%. At the same time, microbial metabolites can increase americium (Am) desorption from rocks with a low clay fraction content. Additionally, particle size analysis was performed using a step-by-step filtration approach, aiming to evaluate the risks that are associated with colloidal phase formation. It was shown that microbiological stimulation resulted in particle enlargement, substantially diminishing the presence of actinides in the form of dissolved or sub-50 nm nanoparticles. This outcome significantly reduced the potential for colloidal and pseudocolloidal transfer, thereby lowering associated risks.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.