Jingbo Sun, Wen Chen, K. Qin, Ze Shen, Shuangfeng Zhao, Wen Zhang, Jiyuan Yin
{"title":"大兴安岭南部早白垩世发掘:来自(U-Th)/He和裂变径迹热年代学的证据","authors":"Jingbo Sun, Wen Chen, K. Qin, Ze Shen, Shuangfeng Zhao, Wen Zhang, Jiyuan Yin","doi":"10.1086/722958","DOIUrl":null,"url":null,"abstract":"The southern Great Xing’an Range in southeastern Inner Mongolia, north of the North China Craton, is a region influenced by different tectonic regimes. The Mesozoic–Cenozoic geological and topographic evolution remains controversial. In this study, we decipher the thermal evolution of the southern Great Xing’an Range by applying zircon and apatite (U-Th)/He and apatite fission-track thermochronology to granitoids to constrain the history of exhumation induced by the superposition of different tectonic activities and the history of geomorphological evolution. Zircon (U-Th)/He dating yields Early Cretaceous ages (109.1–134.9 Ma) and one early Permian age (292.0 Ma). Apatite (U-Th)/He dating and fission-track dating yield Early Cretaceous to early Late Cretaceous ages of 89.8–117.6 and 97.8–99.9 Ma, respectively. Combining these ages with previously published zircon U-Pb data and thermal history modeling, we suggest that the southern Great Xing’an Range experienced rapid cooling and exhumation during the Early Cretaceous. This cooling stage coincided with widespread extensional tectonics in northeastern China, which are thought to have been induced by the postorogenic collapse of thickened crust associated with the Mongol-Okhotsk Ocean and backarc extension associated with subduction of the Paleo-Pacific plate. This study implies that the southern Great Xing’an Range does not record significant exhumation during the Cenozoic.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Cretaceous Exhumation of the Southern Great Xing’an Range, Northeastern China: Evidence from (U-Th)/He and Fission-Track Thermochronology\",\"authors\":\"Jingbo Sun, Wen Chen, K. Qin, Ze Shen, Shuangfeng Zhao, Wen Zhang, Jiyuan Yin\",\"doi\":\"10.1086/722958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The southern Great Xing’an Range in southeastern Inner Mongolia, north of the North China Craton, is a region influenced by different tectonic regimes. The Mesozoic–Cenozoic geological and topographic evolution remains controversial. In this study, we decipher the thermal evolution of the southern Great Xing’an Range by applying zircon and apatite (U-Th)/He and apatite fission-track thermochronology to granitoids to constrain the history of exhumation induced by the superposition of different tectonic activities and the history of geomorphological evolution. Zircon (U-Th)/He dating yields Early Cretaceous ages (109.1–134.9 Ma) and one early Permian age (292.0 Ma). Apatite (U-Th)/He dating and fission-track dating yield Early Cretaceous to early Late Cretaceous ages of 89.8–117.6 and 97.8–99.9 Ma, respectively. Combining these ages with previously published zircon U-Pb data and thermal history modeling, we suggest that the southern Great Xing’an Range experienced rapid cooling and exhumation during the Early Cretaceous. This cooling stage coincided with widespread extensional tectonics in northeastern China, which are thought to have been induced by the postorogenic collapse of thickened crust associated with the Mongol-Okhotsk Ocean and backarc extension associated with subduction of the Paleo-Pacific plate. This study implies that the southern Great Xing’an Range does not record significant exhumation during the Cenozoic.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/722958\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/722958","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Early Cretaceous Exhumation of the Southern Great Xing’an Range, Northeastern China: Evidence from (U-Th)/He and Fission-Track Thermochronology
The southern Great Xing’an Range in southeastern Inner Mongolia, north of the North China Craton, is a region influenced by different tectonic regimes. The Mesozoic–Cenozoic geological and topographic evolution remains controversial. In this study, we decipher the thermal evolution of the southern Great Xing’an Range by applying zircon and apatite (U-Th)/He and apatite fission-track thermochronology to granitoids to constrain the history of exhumation induced by the superposition of different tectonic activities and the history of geomorphological evolution. Zircon (U-Th)/He dating yields Early Cretaceous ages (109.1–134.9 Ma) and one early Permian age (292.0 Ma). Apatite (U-Th)/He dating and fission-track dating yield Early Cretaceous to early Late Cretaceous ages of 89.8–117.6 and 97.8–99.9 Ma, respectively. Combining these ages with previously published zircon U-Pb data and thermal history modeling, we suggest that the southern Great Xing’an Range experienced rapid cooling and exhumation during the Early Cretaceous. This cooling stage coincided with widespread extensional tectonics in northeastern China, which are thought to have been induced by the postorogenic collapse of thickened crust associated with the Mongol-Okhotsk Ocean and backarc extension associated with subduction of the Paleo-Pacific plate. This study implies that the southern Great Xing’an Range does not record significant exhumation during the Cenozoic.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.