R. Tsuruoka, H. Terasaki, S. Kamada, F. Maeda, T. Kondo, N. Hirao, S. Kawaguchi, Iori Yamada, S. Urakawa, A. Machida
{"title":"利用X射线吸收法结合外部加热的金刚石砧座电池研究高达10GPa的液态镓的密度和弹性特性","authors":"R. Tsuruoka, H. Terasaki, S. Kamada, F. Maeda, T. Kondo, N. Hirao, S. Kawaguchi, Iori Yamada, S. Urakawa, A. Machida","doi":"10.1080/08957959.2021.1998478","DOIUrl":null,"url":null,"abstract":"ABSTRACT The density of liquid metals at high pressure and high-temperature provides fundamental and important information for understanding their compression behavior and elastic properties. In this study, the densities of liquid gallium (Ga) were measured up to 10 GPa and 533 K using the X-ray absorption method combined with an externally heated diamond anvil cell. The elastic properties (the isothermal bulk modulus (KT0 ), and its pressure derivative (KT0’)) of liquid Ga were obtained by fitting the density data with three equations of state (EOSs) (Murnaghan, third order Birch–Murnaghan, and Vinet). The KT0 values of liquid Ga were determined to be 45.7 ± 1.0–51.7 ± 1.0 GPa at 500 K assuming KT0’ values of 4–6. The obtained KT0 or KT0 ′ showed almost the same values regardless of the EOS used. Compared with previous results, the compression curve of liquid Ga obtained in this study had a slightly stiffer trend at higher pressures.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"379 - 391"},"PeriodicalIF":1.2000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density and elastic properties of liquid gallium up to 10 GPa using X-ray absorption method combined with externally heated diamond anvil cell\",\"authors\":\"R. Tsuruoka, H. Terasaki, S. Kamada, F. Maeda, T. Kondo, N. Hirao, S. Kawaguchi, Iori Yamada, S. Urakawa, A. Machida\",\"doi\":\"10.1080/08957959.2021.1998478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The density of liquid metals at high pressure and high-temperature provides fundamental and important information for understanding their compression behavior and elastic properties. In this study, the densities of liquid gallium (Ga) were measured up to 10 GPa and 533 K using the X-ray absorption method combined with an externally heated diamond anvil cell. The elastic properties (the isothermal bulk modulus (KT0 ), and its pressure derivative (KT0’)) of liquid Ga were obtained by fitting the density data with three equations of state (EOSs) (Murnaghan, third order Birch–Murnaghan, and Vinet). The KT0 values of liquid Ga were determined to be 45.7 ± 1.0–51.7 ± 1.0 GPa at 500 K assuming KT0’ values of 4–6. The obtained KT0 or KT0 ′ showed almost the same values regardless of the EOS used. Compared with previous results, the compression curve of liquid Ga obtained in this study had a slightly stiffer trend at higher pressures.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"41 1\",\"pages\":\"379 - 391\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2021.1998478\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1998478","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Density and elastic properties of liquid gallium up to 10 GPa using X-ray absorption method combined with externally heated diamond anvil cell
ABSTRACT The density of liquid metals at high pressure and high-temperature provides fundamental and important information for understanding their compression behavior and elastic properties. In this study, the densities of liquid gallium (Ga) were measured up to 10 GPa and 533 K using the X-ray absorption method combined with an externally heated diamond anvil cell. The elastic properties (the isothermal bulk modulus (KT0 ), and its pressure derivative (KT0’)) of liquid Ga were obtained by fitting the density data with three equations of state (EOSs) (Murnaghan, third order Birch–Murnaghan, and Vinet). The KT0 values of liquid Ga were determined to be 45.7 ± 1.0–51.7 ± 1.0 GPa at 500 K assuming KT0’ values of 4–6. The obtained KT0 or KT0 ′ showed almost the same values regardless of the EOS used. Compared with previous results, the compression curve of liquid Ga obtained in this study had a slightly stiffer trend at higher pressures.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.