{"title":"测量和绘制微观层面的收入不平等以实现可持续发展目标——一种多变量小区域建模方法","authors":"Saurav Guha, Hukum Chandra","doi":"10.2478/jos-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract The earning inequality in India has unfavorably obstructed underprivileged in accessing elementary needs like health and education. Periodic labour force survey conducted by National Statistical Office of India generates estimates on earning status at national and state level for both rural and urban sectors separately. However, due to small sample size problem, these surveys cannot generate reliable estimates at micro-level viz. district or block. Thus, owing to unavailability of district-level estimates, analysis of earning inequality is restricted to the national and the state level. Therefore, the existing variability in disaggregate-level earning distribution often goes unnoticed. This article describes multivariate small area estimation method to generate precise and representative district-wise estimate of earning distribution in rural and urban areas of the Indian State of Bihar by linking Periodic labour force survey data of 2018–2019 and 2011 Population Census data of India. These disaggregate-level estimates and spatial mapping of earning distribution are essential for measuring and monitoring the goal of reduced inequalities related to the sustainable development of 2030 agenda. They expected to offer insightful information to decision-makers and policy experts for identifying the areas demanding more attention.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"38 1","pages":"823 - 845"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measuring and Mapping Micro Level Earning Inequality towards Addressing the Sustainable Development Goals – A Multivariate Small Area Modelling Approach\",\"authors\":\"Saurav Guha, Hukum Chandra\",\"doi\":\"10.2478/jos-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The earning inequality in India has unfavorably obstructed underprivileged in accessing elementary needs like health and education. Periodic labour force survey conducted by National Statistical Office of India generates estimates on earning status at national and state level for both rural and urban sectors separately. However, due to small sample size problem, these surveys cannot generate reliable estimates at micro-level viz. district or block. Thus, owing to unavailability of district-level estimates, analysis of earning inequality is restricted to the national and the state level. Therefore, the existing variability in disaggregate-level earning distribution often goes unnoticed. This article describes multivariate small area estimation method to generate precise and representative district-wise estimate of earning distribution in rural and urban areas of the Indian State of Bihar by linking Periodic labour force survey data of 2018–2019 and 2011 Population Census data of India. These disaggregate-level estimates and spatial mapping of earning distribution are essential for measuring and monitoring the goal of reduced inequalities related to the sustainable development of 2030 agenda. They expected to offer insightful information to decision-makers and policy experts for identifying the areas demanding more attention.\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"38 1\",\"pages\":\"823 - 845\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2022-0036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Measuring and Mapping Micro Level Earning Inequality towards Addressing the Sustainable Development Goals – A Multivariate Small Area Modelling Approach
Abstract The earning inequality in India has unfavorably obstructed underprivileged in accessing elementary needs like health and education. Periodic labour force survey conducted by National Statistical Office of India generates estimates on earning status at national and state level for both rural and urban sectors separately. However, due to small sample size problem, these surveys cannot generate reliable estimates at micro-level viz. district or block. Thus, owing to unavailability of district-level estimates, analysis of earning inequality is restricted to the national and the state level. Therefore, the existing variability in disaggregate-level earning distribution often goes unnoticed. This article describes multivariate small area estimation method to generate precise and representative district-wise estimate of earning distribution in rural and urban areas of the Indian State of Bihar by linking Periodic labour force survey data of 2018–2019 and 2011 Population Census data of India. These disaggregate-level estimates and spatial mapping of earning distribution are essential for measuring and monitoring the goal of reduced inequalities related to the sustainable development of 2030 agenda. They expected to offer insightful information to decision-makers and policy experts for identifying the areas demanding more attention.
期刊介绍:
JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.