加筋土墙土壤条件的热工水力学数值模拟

IF 2.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Geosynthetics International Pub Date : 2023-07-21 DOI:10.1680/jgein.23.00026
A. Moncada, I. P. Damians, S. Olivella, R. Bathurst
{"title":"加筋土墙土壤条件的热工水力学数值模拟","authors":"A. Moncada, I. P. Damians, S. Olivella, R. Bathurst","doi":"10.1680/jgein.23.00026","DOIUrl":null,"url":null,"abstract":"The role of temperature and relative humidity on long-term mechanical and chemical degradation of polyester fibres due to hydrolysis and creep is well documented. This study presents the results of a thermo-hydraulic 2D finite-element model used to estimate the magnitude and distribution of in-situ temperature, relative humidity, and degree of saturation in the backfill of reinforced soil walls (RSWs) due to changes in atmospheric boundary conditions. Boundary conditions for in-air temperature, relative humidity and daily precipitation were taken from weather databases for continental, Mediterranean, desert, and tropical climates. Scenarios with different water tables, and permeable or impermeable zones around the reinforced soil zone were analyzed. Numerical outcomes show that mean in-soil temperature values can be related to the mean annual atmospheric value for each geographical location, with relevant fluctuations limited to the first 3 meters of distance from the vertical and horizontal boundaries. In-soil relative humidity values depended on the climate dataset and the permeability of the zones adjacent to the reinforced soil. The results of this study and lessons learned are a valuable precursor for future studies of coupled thermo-hydro-mechanical modelling of polyester geosynthetic RSWs under in-situ operational conditions.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-hydraulic numerical modelling of in-soil conditions in reinforced soil walls\",\"authors\":\"A. Moncada, I. P. Damians, S. Olivella, R. Bathurst\",\"doi\":\"10.1680/jgein.23.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of temperature and relative humidity on long-term mechanical and chemical degradation of polyester fibres due to hydrolysis and creep is well documented. This study presents the results of a thermo-hydraulic 2D finite-element model used to estimate the magnitude and distribution of in-situ temperature, relative humidity, and degree of saturation in the backfill of reinforced soil walls (RSWs) due to changes in atmospheric boundary conditions. Boundary conditions for in-air temperature, relative humidity and daily precipitation were taken from weather databases for continental, Mediterranean, desert, and tropical climates. Scenarios with different water tables, and permeable or impermeable zones around the reinforced soil zone were analyzed. Numerical outcomes show that mean in-soil temperature values can be related to the mean annual atmospheric value for each geographical location, with relevant fluctuations limited to the first 3 meters of distance from the vertical and horizontal boundaries. In-soil relative humidity values depended on the climate dataset and the permeability of the zones adjacent to the reinforced soil. The results of this study and lessons learned are a valuable precursor for future studies of coupled thermo-hydro-mechanical modelling of polyester geosynthetic RSWs under in-situ operational conditions.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00026\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00026","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

温度和相对湿度对聚酯纤维因水解和蠕变而发生的长期机械和化学降解的作用已得到充分证明。本研究介绍了一个热工水力学二维有限元模型的结果,该模型用于估计由于大气边界条件的变化而导致的加筋土墙(RSW)回填中的现场温度、相对湿度和饱和度的大小和分布。气温、相对湿度和日降水量的边界条件取自大陆、地中海、沙漠和热带气候的天气数据库。分析了不同地下水位以及加筋土区域周围可渗透或不可渗透区域的情况。数值结果表明,土壤平均温度值可能与每个地理位置的年平均大气值有关,相关波动仅限于距离垂直和水平边界的前3米。土壤中的相对湿度值取决于气候数据集和加固土壤附近区域的渗透性。这项研究的结果和经验教训为未来研究聚酯土工合成RSW在现场操作条件下的热-水-机械耦合建模提供了有价值的先导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermo-hydraulic numerical modelling of in-soil conditions in reinforced soil walls
The role of temperature and relative humidity on long-term mechanical and chemical degradation of polyester fibres due to hydrolysis and creep is well documented. This study presents the results of a thermo-hydraulic 2D finite-element model used to estimate the magnitude and distribution of in-situ temperature, relative humidity, and degree of saturation in the backfill of reinforced soil walls (RSWs) due to changes in atmospheric boundary conditions. Boundary conditions for in-air temperature, relative humidity and daily precipitation were taken from weather databases for continental, Mediterranean, desert, and tropical climates. Scenarios with different water tables, and permeable or impermeable zones around the reinforced soil zone were analyzed. Numerical outcomes show that mean in-soil temperature values can be related to the mean annual atmospheric value for each geographical location, with relevant fluctuations limited to the first 3 meters of distance from the vertical and horizontal boundaries. In-soil relative humidity values depended on the climate dataset and the permeability of the zones adjacent to the reinforced soil. The results of this study and lessons learned are a valuable precursor for future studies of coupled thermo-hydro-mechanical modelling of polyester geosynthetic RSWs under in-situ operational conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosynthetics International
Geosynthetics International ENGINEERING, GEOLOGICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.90
自引率
20.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice. Topics covered The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.
期刊最新文献
Geosynthetic MSE walls research and practice: past, present, and future (2023 IGS Bathurst Lecture) Investigation of the mechanical response of recovered geogrids under repeated loading Factors affecting the tensile strength of bituminous geomembrane seams Centrifuge modeling of levees with geocomposite chimney drain subjected to flooding Selection of long-term shear strength parameters for strain softening geosynthetic interfaces (2023 IGS Rowe Lecture)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1