{"title":"固态钠电池用新型固体聚合物电解质(PEG + CH3COONa)的合成与表征","authors":"A. Polu, V. Mekala, T. Ramesh","doi":"10.15251/jobm.2022.142.63","DOIUrl":null,"url":null,"abstract":"Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and characterization of new solid polymer electrolyte (PEG + CH3COONa) for solid-state sodium batteries\",\"authors\":\"A. Polu, V. Mekala, T. Ramesh\",\"doi\":\"10.15251/jobm.2022.142.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.\",\"PeriodicalId\":43605,\"journal\":{\"name\":\"Journal of Optoelectronic and Biomedical Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optoelectronic and Biomedical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jobm.2022.142.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optoelectronic and Biomedical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2022.142.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of new solid polymer electrolyte (PEG + CH3COONa) for solid-state sodium batteries
Using the solution-cast approach, new solid polymer electrolyte films containing sodium acetate (CH3COONa) in poly (ethylene glycol) were prepared. These polymer electrolyte systems have been characterized using a variety of experimental approaches, including temperature-dependent conductivity and DSC. The endothermic peak at 59.42°C, which corresponds to the melting temperature of pure PEG, is revealed by DSC measurements. Due to the addition of salt to the polymer, a minor movement in the melting point, Tm, towards lower temperatures has been detected. At 30°C, the 80PEG+20CH3COONa electrolyte system had a maximum conductivity of 7.9 × 10-6 S/cm. When compared to pure PEG, the conductivity enhanced by two orders of magnitude. The magnitude of conductivity increased as the temperature raised.