基于局部几何特征的流形光谱聚类图像分割算法

张荣国, 姚晓玲, 赵建, 胡静, 刘小君
{"title":"基于局部几何特征的流形光谱聚类图像分割算法","authors":"张荣国, 姚晓玲, 赵建, 胡静, 刘小君","doi":"10.16451/J.CNKI.ISSN1003-6059.202004004","DOIUrl":null,"url":null,"abstract":"To improve the accuracy and timeliness of spectral clustering image segmentation,an algorithm of manifold spectral clustering image segmentation based on local geometry features is proposed.Firstly,considering the manifold structure of image data,the relationship of data intrinsic dimensions is obtained by performing spectral clustering based on local principal components analysis in the k-nearest neighbor region of data points.Then,the local linear reconstruction technique in manifold learning is introduced,and the similarity of local tangent space between data is obtained via mixed linear analyzers,and the similarity matrix with local geometric features is constructed by merging the intrinsic dimension and the local tangent space.Nystr m technique is utilized to approximate eigenvectors of the image to be segmented,and spectral clustering is performed on the constructed k principal eigenvectors.Finally,experiments on Berkeley dataset show the advantages of the proposed algorithm in accuracy and timeliness.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold Spectral Clustering Image Segmentation Algorithm Based on Local Geometry Features\",\"authors\":\"张荣国, 姚晓玲, 赵建, 胡静, 刘小君\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202004004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the accuracy and timeliness of spectral clustering image segmentation,an algorithm of manifold spectral clustering image segmentation based on local geometry features is proposed.Firstly,considering the manifold structure of image data,the relationship of data intrinsic dimensions is obtained by performing spectral clustering based on local principal components analysis in the k-nearest neighbor region of data points.Then,the local linear reconstruction technique in manifold learning is introduced,and the similarity of local tangent space between data is obtained via mixed linear analyzers,and the similarity matrix with local geometric features is constructed by merging the intrinsic dimension and the local tangent space.Nystr m technique is utilized to approximate eigenvectors of the image to be segmented,and spectral clustering is performed on the constructed k principal eigenvectors.Finally,experiments on Berkeley dataset show the advantages of the proposed algorithm in accuracy and timeliness.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

为了提高光谱聚类图像分割的准确性和及时性,提出了一种基于局部几何特征的多光谱聚类图像的分割算法。首先,考虑到图像数据的流形结构,通过在数据点的k近邻区域中进行基于局部主成分分析的光谱聚类,得到数据内在维度的关系。然后,介绍了流形学习中的局部线性重构技术,通过混合线性分析器获得数据之间的局部切线空间的相似性,并通过合并本征维数和局部切线空间来构造具有局部几何特征的相似性矩阵。利用Nystrm技术对待分割图像的特征向量进行近似,并对构造的k个主特征向量进行谱聚类。最后,在Berkeley数据集上的实验表明了该算法在准确性和及时性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manifold Spectral Clustering Image Segmentation Algorithm Based on Local Geometry Features
To improve the accuracy and timeliness of spectral clustering image segmentation,an algorithm of manifold spectral clustering image segmentation based on local geometry features is proposed.Firstly,considering the manifold structure of image data,the relationship of data intrinsic dimensions is obtained by performing spectral clustering based on local principal components analysis in the k-nearest neighbor region of data points.Then,the local linear reconstruction technique in manifold learning is introduced,and the similarity of local tangent space between data is obtained via mixed linear analyzers,and the similarity matrix with local geometric features is constructed by merging the intrinsic dimension and the local tangent space.Nystr m technique is utilized to approximate eigenvectors of the image to be segmented,and spectral clustering is performed on the constructed k principal eigenvectors.Finally,experiments on Berkeley dataset show the advantages of the proposed algorithm in accuracy and timeliness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1