实验规模管式反应器中动物粪便热解的研究:过程温度和停留时间的影响

IF 0.5 Q4 ENGINEERING, CHEMICAL Hungarian Journal of Industry and Chemistry Pub Date : 2022-11-22 DOI:10.33927/hjic-2022-15
Maria Elena Lozano Fernandez, Szabina Tomasek, Csaba Fáyköd, A. Somogyi
{"title":"实验规模管式反应器中动物粪便热解的研究:过程温度和停留时间的影响","authors":"Maria Elena Lozano Fernandez, Szabina Tomasek, Csaba Fáyköd, A. Somogyi","doi":"10.33927/hjic-2022-15","DOIUrl":null,"url":null,"abstract":"This paper focuses on the pyrolysis of animal manure in a laboratory-scale tubular reactor between 300 and 900°C at nitrogen flow rates of 1 and 5 dm3/h. During the experiments, it was found that both the temperature and nitrogen flow rate had significant effects on the product yields and compositions. The highest gas yield and syngas content were observed at 900°C at a nitrogen flow rate of 1 dm3/h. In this case, since the gaseous product was characterized by a H2/CO ratio of 0:5, its quality must be improved prior to being used for synthesis. The composition of the solid residue was also affected by the pyrolysis parameters. Based on the hydrogen/carbon and oxygen/carbon ratios, it was concluded that both the water-gas shift and Boudouard reactions were the most critical.","PeriodicalId":43118,"journal":{"name":"Hungarian Journal of Industry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Pyrolysis of Animal Manure in a Laboratory-Scale Tubular Reactor: The Effect of the Process Temperature and Residence Time\",\"authors\":\"Maria Elena Lozano Fernandez, Szabina Tomasek, Csaba Fáyköd, A. Somogyi\",\"doi\":\"10.33927/hjic-2022-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the pyrolysis of animal manure in a laboratory-scale tubular reactor between 300 and 900°C at nitrogen flow rates of 1 and 5 dm3/h. During the experiments, it was found that both the temperature and nitrogen flow rate had significant effects on the product yields and compositions. The highest gas yield and syngas content were observed at 900°C at a nitrogen flow rate of 1 dm3/h. In this case, since the gaseous product was characterized by a H2/CO ratio of 0:5, its quality must be improved prior to being used for synthesis. The composition of the solid residue was also affected by the pyrolysis parameters. Based on the hydrogen/carbon and oxygen/carbon ratios, it was concluded that both the water-gas shift and Boudouard reactions were the most critical.\",\"PeriodicalId\":43118,\"journal\":{\"name\":\"Hungarian Journal of Industry and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Journal of Industry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33927/hjic-2022-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33927/hjic-2022-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了在实验室规模的管式反应器中,在300 ~ 900℃范围内,氮气流量为1 ~ 5 dm3/h,对动物粪便进行热解。实验发现,温度和氮气流量对产物收率和组成均有显著影响。在900℃、氮气流量为1 dm3/h时,产气量和合成气含量最高。在这种情况下,由于气态产物的特征是H2/CO比为0:5,因此在用于合成之前必须提高其质量。热解参数对固体渣油的组成也有影响。根据氢/碳和氧/碳的比值,得出水气转换和Boudouard反应是最关键的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Pyrolysis of Animal Manure in a Laboratory-Scale Tubular Reactor: The Effect of the Process Temperature and Residence Time
This paper focuses on the pyrolysis of animal manure in a laboratory-scale tubular reactor between 300 and 900°C at nitrogen flow rates of 1 and 5 dm3/h. During the experiments, it was found that both the temperature and nitrogen flow rate had significant effects on the product yields and compositions. The highest gas yield and syngas content were observed at 900°C at a nitrogen flow rate of 1 dm3/h. In this case, since the gaseous product was characterized by a H2/CO ratio of 0:5, its quality must be improved prior to being used for synthesis. The composition of the solid residue was also affected by the pyrolysis parameters. Based on the hydrogen/carbon and oxygen/carbon ratios, it was concluded that both the water-gas shift and Boudouard reactions were the most critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
9
审稿时长
6 weeks
期刊最新文献
Effect of Heat Treatment on the Structure of Self-Assembled Undecenyl Phosphonic Acid Layers Developed on Different Stainless Steel Surfaces Extraction of the Food Additive Tartaric Acid Using Octanol, Methyl Isobutyl Ketone, Kerosene, Mustard Oil, And Groundnut Oil Study of Composite Pipelines Damaged by Corrosion: Control by Non-Destructive Testing Production of a Highly Concentrated Gold Solution from Aqua Regia Gold Leachate Using Sugarcane Bagasse Nanoparticles Influence of Tic on Density and Microstructure of Al2O3 Ceramics Doped with Nb2O5 and Lif
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1