{"title":"考虑不同上游河流输入的下游洪水流量的人工神经网络确定","authors":"Briti Sundar Sil, B. Das","doi":"10.4090/JUEE.2018.V12N1.154159","DOIUrl":null,"url":null,"abstract":"For estimating and forecasting of flood event, researchers and engineers mostly use the Muskingum flood routing method which is widely used throughout the world. The application of two parameter based Muskingum model is valid only for single inflow flood routing without any lateral inflow into the routing reach. However, normally a river is fed by a number of branch channels or rivulets at various upstream points. So, the single inflow-outflow Muskingum model cannot be applied in such situation. To overcome this problem, artificial Neural Network (ANN) has been applied in a river system considering inflow from various upstream rivers with a common outflow section. A simple static ANN model have been developed using concurrent discharge data. The model is applied in Mississippi River network starting from St. Louis, Montana to downstream section at Thebes, Illinois. In this reach, from St. Louis to Thebes, in the Mississippi river, a total of six lateral inflows confluence to the main river at different locations. Using ANN model, considering water discharge as input from all the upstream sections, water discharge at the most downstream section, Thebes is computed. Statistical performance analysis of the estimated data shows that ANN can be efficiently used for estimation of flood flow considering multiple inflows.","PeriodicalId":17594,"journal":{"name":"Journal of Urban and Environmental Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DETERMINATION OF DOWNSTREAM FLOOD FLOW CONSIDERING INPUTS FROM DIFFERENT UPSTREAM RIVERS USING ANN\",\"authors\":\"Briti Sundar Sil, B. Das\",\"doi\":\"10.4090/JUEE.2018.V12N1.154159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For estimating and forecasting of flood event, researchers and engineers mostly use the Muskingum flood routing method which is widely used throughout the world. The application of two parameter based Muskingum model is valid only for single inflow flood routing without any lateral inflow into the routing reach. However, normally a river is fed by a number of branch channels or rivulets at various upstream points. So, the single inflow-outflow Muskingum model cannot be applied in such situation. To overcome this problem, artificial Neural Network (ANN) has been applied in a river system considering inflow from various upstream rivers with a common outflow section. A simple static ANN model have been developed using concurrent discharge data. The model is applied in Mississippi River network starting from St. Louis, Montana to downstream section at Thebes, Illinois. In this reach, from St. Louis to Thebes, in the Mississippi river, a total of six lateral inflows confluence to the main river at different locations. Using ANN model, considering water discharge as input from all the upstream sections, water discharge at the most downstream section, Thebes is computed. Statistical performance analysis of the estimated data shows that ANN can be efficiently used for estimation of flood flow considering multiple inflows.\",\"PeriodicalId\":17594,\"journal\":{\"name\":\"Journal of Urban and Environmental Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4090/JUEE.2018.V12N1.154159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4090/JUEE.2018.V12N1.154159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
DETERMINATION OF DOWNSTREAM FLOOD FLOW CONSIDERING INPUTS FROM DIFFERENT UPSTREAM RIVERS USING ANN
For estimating and forecasting of flood event, researchers and engineers mostly use the Muskingum flood routing method which is widely used throughout the world. The application of two parameter based Muskingum model is valid only for single inflow flood routing without any lateral inflow into the routing reach. However, normally a river is fed by a number of branch channels or rivulets at various upstream points. So, the single inflow-outflow Muskingum model cannot be applied in such situation. To overcome this problem, artificial Neural Network (ANN) has been applied in a river system considering inflow from various upstream rivers with a common outflow section. A simple static ANN model have been developed using concurrent discharge data. The model is applied in Mississippi River network starting from St. Louis, Montana to downstream section at Thebes, Illinois. In this reach, from St. Louis to Thebes, in the Mississippi river, a total of six lateral inflows confluence to the main river at different locations. Using ANN model, considering water discharge as input from all the upstream sections, water discharge at the most downstream section, Thebes is computed. Statistical performance analysis of the estimated data shows that ANN can be efficiently used for estimation of flood flow considering multiple inflows.
期刊介绍:
Journal of Urban and Environmental Engineering (JUEE) provides a forum for original papers and for the exchange of information and views on significant developments in urban and environmental engineering worldwide. The scope of the journal includes: (a) Water Resources and Waste Management [...] (b) Constructions and Environment[...] (c) Urban Design[...] (d) Transportation Engineering[...] The Editors welcome original papers, scientific notes and discussions, in English, in those and related topics. All papers submitted to the Journal are peer reviewed by an international panel of Associate Editors and other experts. Authors are encouraged to suggest potential referees with their submission. Authors will have to confirm that the work, or any part of it, has not been published before and is not presently being considered for publication elsewhere.