{"title":"具有Katugampola分数积分和反周期条件的Hilfer分数微分方程的边值问题","authors":"Abdelatif Boutiara, Maamar Benbachir, K. Guerbati","doi":"10.24193/mathcluj.2021.2.07","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to investigate the existence and uniqueness of solutions for a new class of nonlinear fractional differential equations involving Hilfer fractional operator with fractional integral boundary conditions. Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlinear contraction. At the end, an illustrative example is presented. The boundary conditions introduced in this work are of quite general nature and can be reduce to many special cases by fixing the parameters involved in the conditions.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boundary value problems for Hilfer fractional differential equations with Katugampola fractional integral and anti-periodic conditions\",\"authors\":\"Abdelatif Boutiara, Maamar Benbachir, K. Guerbati\",\"doi\":\"10.24193/mathcluj.2021.2.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to investigate the existence and uniqueness of solutions for a new class of nonlinear fractional differential equations involving Hilfer fractional operator with fractional integral boundary conditions. Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlinear contraction. At the end, an illustrative example is presented. The boundary conditions introduced in this work are of quite general nature and can be reduce to many special cases by fixing the parameters involved in the conditions.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2021.2.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2021.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Boundary value problems for Hilfer fractional differential equations with Katugampola fractional integral and anti-periodic conditions
The purpose of this paper is to investigate the existence and uniqueness of solutions for a new class of nonlinear fractional differential equations involving Hilfer fractional operator with fractional integral boundary conditions. Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlinear contraction. At the end, an illustrative example is presented. The boundary conditions introduced in this work are of quite general nature and can be reduce to many special cases by fixing the parameters involved in the conditions.