从脱硫弧菌中分离的硫酸腺苷酸还原酶的潜在抑制剂PU/PU- ag用于控制油罐和管道的点蚀。

Q4 Pharmacology, Toxicology and Pharmaceutics Current Enzyme Inhibition Pub Date : 2021-07-05 DOI:10.2174/1573408017666210705123927
Wafaa A. Koush, A. Labena, Hany Elsawy, L. Farahat, Tarek M. Mohamed, Maha M. Salem
{"title":"从脱硫弧菌中分离的硫酸腺苷酸还原酶的潜在抑制剂PU/PU- ag用于控制油罐和管道的点蚀。","authors":"Wafaa A. Koush, A. Labena, Hany Elsawy, L. Farahat, Tarek M. Mohamed, Maha M. Salem","doi":"10.2174/1573408017666210705123927","DOIUrl":null,"url":null,"abstract":"This study aims to alleviate the microbiologically affected corrosion that occurred by sulfate-reducing bacteria (SRB) through synthesizing a bio-based polyurethane polymer and its nanocomposite coating, silver nanoparticles (PU-Ag). Moreover, this study aims to evaluate the effect of PU alone and PU-Ag as inhibitors for adenylyl sulfate reductase (APS), which is the main enzyme for sulfate reduction.\n\n\n\n\n In this study, the PU was prepared from the vegetable soybean oil, and the silver nanoparticles (Ag-NPs) with a concentration of 1% were coated to the PU, forming a nanocomposite. The PU and the PU-Ag were characterized and evaluated as inhibitors of the APS reductase enzyme.\n\n\n\n\n The results obtained from FTIR, UV, DLS, TEM, and XRD confirmed the preparation structure of the PU and PU-Ag. Furthermore, the PU/PU-Ag competitively inhibited the APS reductase with an inhibition constant equal to 35.7 and 11 mg, respectively. These indicated the exert inhibitory effect of PU/PU-Ag upon the activity of the APS reductase enzyme.\n\n\n\n\n The APS reductase enzyme produced by SRB, which is recorded as a big problem in the oil and gas industry, such as pitting corrosion of tanks and pipelines, could be inhibited by PU and PU-Ag.","PeriodicalId":35405,"journal":{"name":"Current Enzyme Inhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential inhibitor of adenylyl sulfate reductase isolated from Desulfovibrio desulfuricans with PU/PU-Ag to control pitting corrosion of oil tanks and pipelines.\",\"authors\":\"Wafaa A. Koush, A. Labena, Hany Elsawy, L. Farahat, Tarek M. Mohamed, Maha M. Salem\",\"doi\":\"10.2174/1573408017666210705123927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to alleviate the microbiologically affected corrosion that occurred by sulfate-reducing bacteria (SRB) through synthesizing a bio-based polyurethane polymer and its nanocomposite coating, silver nanoparticles (PU-Ag). Moreover, this study aims to evaluate the effect of PU alone and PU-Ag as inhibitors for adenylyl sulfate reductase (APS), which is the main enzyme for sulfate reduction.\\n\\n\\n\\n\\n In this study, the PU was prepared from the vegetable soybean oil, and the silver nanoparticles (Ag-NPs) with a concentration of 1% were coated to the PU, forming a nanocomposite. The PU and the PU-Ag were characterized and evaluated as inhibitors of the APS reductase enzyme.\\n\\n\\n\\n\\n The results obtained from FTIR, UV, DLS, TEM, and XRD confirmed the preparation structure of the PU and PU-Ag. Furthermore, the PU/PU-Ag competitively inhibited the APS reductase with an inhibition constant equal to 35.7 and 11 mg, respectively. These indicated the exert inhibitory effect of PU/PU-Ag upon the activity of the APS reductase enzyme.\\n\\n\\n\\n\\n The APS reductase enzyme produced by SRB, which is recorded as a big problem in the oil and gas industry, such as pitting corrosion of tanks and pipelines, could be inhibited by PU and PU-Ag.\",\"PeriodicalId\":35405,\"journal\":{\"name\":\"Current Enzyme Inhibition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Enzyme Inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573408017666210705123927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Enzyme Inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573408017666210705123927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过合成生物基聚氨酯聚合物及其纳米复合涂层银纳米粒子(PU-Ag)来减轻硫酸盐还原菌(SRB)对微生物的腐蚀。此外,本研究旨在评估单独使用PU和PU-Ag作为硫酸腺苷酸还原酶(APS)抑制剂的效果,APS是硫酸盐还原的主要酶。在本研究中,以植物大豆油为原料制备了聚氨酯,并将浓度为1%的银纳米粒子(Ag-NPs)涂覆在聚氨酯上,形成了纳米复合材料。PU和PU-Ag被表征和评价为APS还原酶的抑制剂。红外光谱、紫外光谱、DLS、透射电镜和X射线衍射结果证实了PU和PU-Ag的制备结构。此外,PU/PU-Ag竞争性地抑制APS还原酶,抑制常数分别为35.7和11mg。这表明PU/PU-Ag对APS还原酶活性具有抑制作用。SRB产生的APS还原酶被PU和PU-Ag抑制,这是石油和天然气工业中的一个大问题,如储罐和管道的点蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential inhibitor of adenylyl sulfate reductase isolated from Desulfovibrio desulfuricans with PU/PU-Ag to control pitting corrosion of oil tanks and pipelines.
This study aims to alleviate the microbiologically affected corrosion that occurred by sulfate-reducing bacteria (SRB) through synthesizing a bio-based polyurethane polymer and its nanocomposite coating, silver nanoparticles (PU-Ag). Moreover, this study aims to evaluate the effect of PU alone and PU-Ag as inhibitors for adenylyl sulfate reductase (APS), which is the main enzyme for sulfate reduction. In this study, the PU was prepared from the vegetable soybean oil, and the silver nanoparticles (Ag-NPs) with a concentration of 1% were coated to the PU, forming a nanocomposite. The PU and the PU-Ag were characterized and evaluated as inhibitors of the APS reductase enzyme. The results obtained from FTIR, UV, DLS, TEM, and XRD confirmed the preparation structure of the PU and PU-Ag. Furthermore, the PU/PU-Ag competitively inhibited the APS reductase with an inhibition constant equal to 35.7 and 11 mg, respectively. These indicated the exert inhibitory effect of PU/PU-Ag upon the activity of the APS reductase enzyme. The APS reductase enzyme produced by SRB, which is recorded as a big problem in the oil and gas industry, such as pitting corrosion of tanks and pipelines, could be inhibited by PU and PU-Ag.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Enzyme Inhibition
Current Enzyme Inhibition Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.30
自引率
0.00%
发文量
30
期刊介绍: Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.
期刊最新文献
Apocynaceae as a Potential Source for Acetylcholinesterase Inhibition in Symptomatic Regulation and Management of Alzheimer's Disease Inhibition of Perforin: A Potential Therapeutic Approach against Human Ailments Molecular Docking as a Method to Identify Prospective Compounds from Ocimum sanctum with Anti-Candidal Properties Design of Cyclobut-3-Ene-1,2 Dione Derivatives as Anti-tubercular Agents Enzyme Inhibition in Managing Cardiovascular Diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1