{"title":"整体叶盘电化学开孔中的旋转进给与移位进给相结合","authors":"Gaopan Lei, D. Zhu, Mingzhu Ren, Dihua Zhu","doi":"10.1080/10910344.2022.2129987","DOIUrl":null,"url":null,"abstract":"Abstract The structure of the blades on a blisk is generally characterized by spatial distortion and spatial bending. Electrochemical trepanning (ECTr) is an effective roughing method in blisk manufacturing. To improve the structural characteristics and the allowance distribution uniformity manufactured by ECTr, a new feeding strategy, in which the relative motion of the cathode and the workpiece is due to simultaneous rotational feeding (RF) and shift feeding (SF), is proposed. The approach is called the rotational feeding combined with shift feeding (RF-SF) strategy. A parametric model and an optimized method for calculating the feeding trajectory (FT) under the RF-SF strategy are presented. To assess the effectiveness of the proposed method, the FTs for a twisted blade with variable cross section and a degree of bending were calculated and simulated for the RF and RF-SF strategies. Compared with the RF strategy, the uniformity of the allowance distribution under the RF-SF strategy was improved by 60.4% and 50.3% at the concave and convex parts, respectively. A blade was machined with RF-SF ECTr. The deviations between the experimental and simulated results were 7.1% and 8.1%, respectively, thereby verifying the effectiveness of the proposed method.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"26 1","pages":"595 - 618"},"PeriodicalIF":2.7000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational feeding combined with shift feeding in the electrochemical trepanning of a blisk\",\"authors\":\"Gaopan Lei, D. Zhu, Mingzhu Ren, Dihua Zhu\",\"doi\":\"10.1080/10910344.2022.2129987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The structure of the blades on a blisk is generally characterized by spatial distortion and spatial bending. Electrochemical trepanning (ECTr) is an effective roughing method in blisk manufacturing. To improve the structural characteristics and the allowance distribution uniformity manufactured by ECTr, a new feeding strategy, in which the relative motion of the cathode and the workpiece is due to simultaneous rotational feeding (RF) and shift feeding (SF), is proposed. The approach is called the rotational feeding combined with shift feeding (RF-SF) strategy. A parametric model and an optimized method for calculating the feeding trajectory (FT) under the RF-SF strategy are presented. To assess the effectiveness of the proposed method, the FTs for a twisted blade with variable cross section and a degree of bending were calculated and simulated for the RF and RF-SF strategies. Compared with the RF strategy, the uniformity of the allowance distribution under the RF-SF strategy was improved by 60.4% and 50.3% at the concave and convex parts, respectively. A blade was machined with RF-SF ECTr. The deviations between the experimental and simulated results were 7.1% and 8.1%, respectively, thereby verifying the effectiveness of the proposed method.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"26 1\",\"pages\":\"595 - 618\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2022.2129987\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129987","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Rotational feeding combined with shift feeding in the electrochemical trepanning of a blisk
Abstract The structure of the blades on a blisk is generally characterized by spatial distortion and spatial bending. Electrochemical trepanning (ECTr) is an effective roughing method in blisk manufacturing. To improve the structural characteristics and the allowance distribution uniformity manufactured by ECTr, a new feeding strategy, in which the relative motion of the cathode and the workpiece is due to simultaneous rotational feeding (RF) and shift feeding (SF), is proposed. The approach is called the rotational feeding combined with shift feeding (RF-SF) strategy. A parametric model and an optimized method for calculating the feeding trajectory (FT) under the RF-SF strategy are presented. To assess the effectiveness of the proposed method, the FTs for a twisted blade with variable cross section and a degree of bending were calculated and simulated for the RF and RF-SF strategies. Compared with the RF strategy, the uniformity of the allowance distribution under the RF-SF strategy was improved by 60.4% and 50.3% at the concave and convex parts, respectively. A blade was machined with RF-SF ECTr. The deviations between the experimental and simulated results were 7.1% and 8.1%, respectively, thereby verifying the effectiveness of the proposed method.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining