基于CNN和RNN算法的VEP信号识别性能分析

Zineb Cheker , Saad Chakkor , Ahmed EL Oualkadi , Mostafa Baghouri , Rachid Belfkih , Jalil Abdelkader El Hangouche , Jawhar Laameche
{"title":"基于CNN和RNN算法的VEP信号识别性能分析","authors":"Zineb Cheker ,&nbsp;Saad Chakkor ,&nbsp;Ahmed EL Oualkadi ,&nbsp;Mostafa Baghouri ,&nbsp;Rachid Belfkih ,&nbsp;Jalil Abdelkader El Hangouche ,&nbsp;Jawhar Laameche","doi":"10.1016/j.neuri.2022.100087","DOIUrl":null,"url":null,"abstract":"<div><p>The visual evoked potential as an electrophysiological signal is mainly used in the neurophysiological exploration of the optic nerves. Traditionally, medical doctors base their diagnosis of specific pathologies related to the time delay of the nerve flow on the time scale. In this context, the VEP latency P100 that reflects a temporal notion is considered the main characteristic on which human interpretation is based. However, its value is influenced by different factors and remains a limited method. This insufficiency triggers our interest instead in deep learning architectures, taking into consideration and adapting to the specificity of each particularity related to the laboratory of the neurophysiological exploration unit in the hospital. The comparison between the results obtained from Matlab by the application of the CNN as well as the RNN, based on the evaluation parameters calculated after k-fold cross-validation, confirms that the CNN-1D architecture can be considered powerful in terms of reliability of classification between signals that are related to pathological subjects and normal ones, which privileges the use of this architecture compared with recurrent neural networks that are less reliable and require more time for execution, subsequently the use of the CNN will allow us to avoid even the extraction of attributes for the discrimination between the two classes object of classification, with the possibility to progressively improve the performance of the solution over time based on the new signals acquired in the VEP analysis laboratory.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 3","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528622000498/pdfft?md5=03e08cd2f3f80887c5f1773673c56f8e&pid=1-s2.0-S2772528622000498-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Performance analysis of VEP signal discrimination using CNN and RNN algorithms\",\"authors\":\"Zineb Cheker ,&nbsp;Saad Chakkor ,&nbsp;Ahmed EL Oualkadi ,&nbsp;Mostafa Baghouri ,&nbsp;Rachid Belfkih ,&nbsp;Jalil Abdelkader El Hangouche ,&nbsp;Jawhar Laameche\",\"doi\":\"10.1016/j.neuri.2022.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The visual evoked potential as an electrophysiological signal is mainly used in the neurophysiological exploration of the optic nerves. Traditionally, medical doctors base their diagnosis of specific pathologies related to the time delay of the nerve flow on the time scale. In this context, the VEP latency P100 that reflects a temporal notion is considered the main characteristic on which human interpretation is based. However, its value is influenced by different factors and remains a limited method. This insufficiency triggers our interest instead in deep learning architectures, taking into consideration and adapting to the specificity of each particularity related to the laboratory of the neurophysiological exploration unit in the hospital. The comparison between the results obtained from Matlab by the application of the CNN as well as the RNN, based on the evaluation parameters calculated after k-fold cross-validation, confirms that the CNN-1D architecture can be considered powerful in terms of reliability of classification between signals that are related to pathological subjects and normal ones, which privileges the use of this architecture compared with recurrent neural networks that are less reliable and require more time for execution, subsequently the use of the CNN will allow us to avoid even the extraction of attributes for the discrimination between the two classes object of classification, with the possibility to progressively improve the performance of the solution over time based on the new signals acquired in the VEP analysis laboratory.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"2 3\",\"pages\":\"Article 100087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000498/pdfft?md5=03e08cd2f3f80887c5f1773673c56f8e&pid=1-s2.0-S2772528622000498-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视觉诱发电位作为一种电生理信号,主要用于视神经的神经生理探查。传统上,医生根据时间尺度对与神经流动时间延迟有关的特定病理进行诊断。在这种情况下,反映时间概念的VEP延迟P100被认为是人类解释所基于的主要特征。然而,其价值受到不同因素的影响,仍然是一种有限的方法。这种不足引发了我们对深度学习架构的兴趣,考虑并适应与医院神经生理探索单元实验室相关的每个特殊性的特殊性。基于k-fold交叉验证计算的评价参数,将CNN与RNN在Matlab中得到的结果进行对比,证实CNN- 1d架构在病理受试者与正常受试者信号的分类可靠性方面是强大的。与可靠性较差且需要更多时间执行的递归神经网络相比,使用这种架构具有特权,随后使用CNN将允许我们甚至避免提取两类分类对象之间的区分属性,并有可能根据在VEP分析实验室中获得的新信号随着时间的推移逐步提高解决方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of VEP signal discrimination using CNN and RNN algorithms

The visual evoked potential as an electrophysiological signal is mainly used in the neurophysiological exploration of the optic nerves. Traditionally, medical doctors base their diagnosis of specific pathologies related to the time delay of the nerve flow on the time scale. In this context, the VEP latency P100 that reflects a temporal notion is considered the main characteristic on which human interpretation is based. However, its value is influenced by different factors and remains a limited method. This insufficiency triggers our interest instead in deep learning architectures, taking into consideration and adapting to the specificity of each particularity related to the laboratory of the neurophysiological exploration unit in the hospital. The comparison between the results obtained from Matlab by the application of the CNN as well as the RNN, based on the evaluation parameters calculated after k-fold cross-validation, confirms that the CNN-1D architecture can be considered powerful in terms of reliability of classification between signals that are related to pathological subjects and normal ones, which privileges the use of this architecture compared with recurrent neural networks that are less reliable and require more time for execution, subsequently the use of the CNN will allow us to avoid even the extraction of attributes for the discrimination between the two classes object of classification, with the possibility to progressively improve the performance of the solution over time based on the new signals acquired in the VEP analysis laboratory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Editorial Board Contents Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1