预测英语学习者的CEFR水平:在机器学习方法中使用微系统标准特征

IF 4.6 1区 文学 Q1 EDUCATION & EDUCATIONAL RESEARCH Recall Pub Date : 2021-11-10 DOI:10.1017/S095834402100029X
Thomas Gaillat, A. Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, Manel Zarrouk
{"title":"预测英语学习者的CEFR水平:在机器学习方法中使用微系统标准特征","authors":"Thomas Gaillat, A. Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, Manel Zarrouk","doi":"10.1017/S095834402100029X","DOIUrl":null,"url":null,"abstract":"Abstract This paper focuses on automatically assessing language proficiency levels according to linguistic complexity in learner English. We implement a supervised learning approach as part of an automatic essay scoring system. The objective is to uncover Common European Framework of Reference for Languages (CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the concept of microsystems with features related to learner-specific linguistic systems in which several forms operate paradigmatically. Results on internal data show that different microsystems help classify writings from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several corpora (59.2% balanced accuracy).","PeriodicalId":47046,"journal":{"name":"Recall","volume":"34 1","pages":"130 - 146"},"PeriodicalIF":4.6000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach\",\"authors\":\"Thomas Gaillat, A. Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, Manel Zarrouk\",\"doi\":\"10.1017/S095834402100029X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper focuses on automatically assessing language proficiency levels according to linguistic complexity in learner English. We implement a supervised learning approach as part of an automatic essay scoring system. The objective is to uncover Common European Framework of Reference for Languages (CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the concept of microsystems with features related to learner-specific linguistic systems in which several forms operate paradigmatically. Results on internal data show that different microsystems help classify writings from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several corpora (59.2% balanced accuracy).\",\"PeriodicalId\":47046,\"journal\":{\"name\":\"Recall\",\"volume\":\"34 1\",\"pages\":\"130 - 146\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recall\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1017/S095834402100029X\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recall","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1017/S095834402100029X","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 8

摘要

摘要本文着重于根据英语学习者的语言复杂性自动评估语言能力水平。我们实现了一种监督学习的方法,作为自动作文评分系统的一部分。目的是揭示英语学习者写作中的共同欧洲语言参考框架(CEFR)标准特征。我们的方法依赖于微系统的概念,该概念具有与特定于学习者的语言系统相关的特征,在该系统中,几种形式进行了语法操作。内部数据的结果显示,不同的微系统有助于将文章从A1级分类到C2级(82%的平衡准确率)。外部数据的总体结果表明,词汇、句法、衔接和准确性特征的组合在几个语料库中产生了最有效的分类(59.2%的平衡准确性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach
Abstract This paper focuses on automatically assessing language proficiency levels according to linguistic complexity in learner English. We implement a supervised learning approach as part of an automatic essay scoring system. The objective is to uncover Common European Framework of Reference for Languages (CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the concept of microsystems with features related to learner-specific linguistic systems in which several forms operate paradigmatically. Results on internal data show that different microsystems help classify writings from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several corpora (59.2% balanced accuracy).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recall
Recall Multiple-
CiteScore
8.50
自引率
4.40%
发文量
17
期刊最新文献
Forty-two years of computer-assisted language learning research: A scientometric study of hotspot research and trending issues Different interlocutors, different EFL interactional strategies: A case study of intercultural telecollaborative projects in secondary classrooms Examining the relationships among motivation, informal digital learning of English, and foreign language enjoyment: An explanatory mixed-method study ReCALL editorial September 2023 issue Sampling and randomisation in experimental and quasi-experimental CALL studies: Issues and recommendations for design, reporting, review, and interpretation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1