Zane J Smith, Demiana R Barsoum, Zachariah Arwood, D. Penumadu, R. Advíncula
{"title":"通过直接墨水书写环氧基核心表征微夹层结构","authors":"Zane J Smith, Demiana R Barsoum, Zachariah Arwood, D. Penumadu, R. Advíncula","doi":"10.1177/10996362221118329","DOIUrl":null,"url":null,"abstract":"Sandwich structured (SS) composites demonstrate considerable flexural stiffness and high strength-to-weight ratios and can be tailored as functional materials. Historically they have been constrained to specific material types and geometry due to limitations in manufacturing methods. However, employing additive manufacturing (AM), specifically direct ink writing (DIW), can provide an alternative method for making SS composites with complex and controllable micro and mesostructures with multifunctionality targeted at desired mechanical, thermal, and electrical properties. DIW, an extrusion-based AM technique, uses a viscous and thixotropic ink with desired components that, once printed, is cured to obtain the final complex net shape parts. In this paper, a novel hybrid AM technique is employed to manufacture SS composite materials containing bisphenol A-based epoxy core and carbon fiber reinforced polymer (CFRP) face sheets that are fabricated via DIW and vacuum infusion process (VIP), respectfully. We demonstrate that the fabrication of these SS composites can be tailored from a thermosetting material, from which additives and/or various lattice structures can be manufactured to achieve enhanced and desirable mechanical integrity with functional properties. Surface topology and mechanical testing techniques are used to characterize the fabricated hybrid SS composites to study and assess mechanical stability. A rheo-kinetic cure model was developed for the core material to allow for additive manufacturing process requirements while ensuring complete cross-linking for the thermoset-based core material. Because of the ability to obtain relatively small core-thickness and controlled architecture, this method now allows for fabricating layered micro-sandwich structures for realizing further light-weighting in relevant applications.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization of micro-sandwich structures via direct ink writing epoxy based cores\",\"authors\":\"Zane J Smith, Demiana R Barsoum, Zachariah Arwood, D. Penumadu, R. Advíncula\",\"doi\":\"10.1177/10996362221118329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandwich structured (SS) composites demonstrate considerable flexural stiffness and high strength-to-weight ratios and can be tailored as functional materials. Historically they have been constrained to specific material types and geometry due to limitations in manufacturing methods. However, employing additive manufacturing (AM), specifically direct ink writing (DIW), can provide an alternative method for making SS composites with complex and controllable micro and mesostructures with multifunctionality targeted at desired mechanical, thermal, and electrical properties. DIW, an extrusion-based AM technique, uses a viscous and thixotropic ink with desired components that, once printed, is cured to obtain the final complex net shape parts. In this paper, a novel hybrid AM technique is employed to manufacture SS composite materials containing bisphenol A-based epoxy core and carbon fiber reinforced polymer (CFRP) face sheets that are fabricated via DIW and vacuum infusion process (VIP), respectfully. We demonstrate that the fabrication of these SS composites can be tailored from a thermosetting material, from which additives and/or various lattice structures can be manufactured to achieve enhanced and desirable mechanical integrity with functional properties. Surface topology and mechanical testing techniques are used to characterize the fabricated hybrid SS composites to study and assess mechanical stability. A rheo-kinetic cure model was developed for the core material to allow for additive manufacturing process requirements while ensuring complete cross-linking for the thermoset-based core material. Because of the ability to obtain relatively small core-thickness and controlled architecture, this method now allows for fabricating layered micro-sandwich structures for realizing further light-weighting in relevant applications.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221118329\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221118329","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Characterization of micro-sandwich structures via direct ink writing epoxy based cores
Sandwich structured (SS) composites demonstrate considerable flexural stiffness and high strength-to-weight ratios and can be tailored as functional materials. Historically they have been constrained to specific material types and geometry due to limitations in manufacturing methods. However, employing additive manufacturing (AM), specifically direct ink writing (DIW), can provide an alternative method for making SS composites with complex and controllable micro and mesostructures with multifunctionality targeted at desired mechanical, thermal, and electrical properties. DIW, an extrusion-based AM technique, uses a viscous and thixotropic ink with desired components that, once printed, is cured to obtain the final complex net shape parts. In this paper, a novel hybrid AM technique is employed to manufacture SS composite materials containing bisphenol A-based epoxy core and carbon fiber reinforced polymer (CFRP) face sheets that are fabricated via DIW and vacuum infusion process (VIP), respectfully. We demonstrate that the fabrication of these SS composites can be tailored from a thermosetting material, from which additives and/or various lattice structures can be manufactured to achieve enhanced and desirable mechanical integrity with functional properties. Surface topology and mechanical testing techniques are used to characterize the fabricated hybrid SS composites to study and assess mechanical stability. A rheo-kinetic cure model was developed for the core material to allow for additive manufacturing process requirements while ensuring complete cross-linking for the thermoset-based core material. Because of the ability to obtain relatively small core-thickness and controlled architecture, this method now allows for fabricating layered micro-sandwich structures for realizing further light-weighting in relevant applications.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).