瓜尔豆的光合作用:从水分胁迫中恢复、基本参数估计和种质间的内在变异

IF 1 Q3 AGRONOMY Journal of Crop Improvement Pub Date : 2022-09-12 DOI:10.1080/15427528.2022.2121348
Rajan Shrestha, C. Adams
{"title":"瓜尔豆的光合作用:从水分胁迫中恢复、基本参数估计和种质间的内在变异","authors":"Rajan Shrestha, C. Adams","doi":"10.1080/15427528.2022.2121348","DOIUrl":null,"url":null,"abstract":"ABSTRACT Little is known about the photosynthetic physiology of guar (Cyamopsis tetragonoloba L. Taub), a legume crop, including how photosynthetic parameters intrinsically vary among germplasm and their recovery from water stress. To address this, two greenhouse studies were conducted: Study-1 to compare photosynthetic light response (A N–I) curves and related parameters in three contrasting guar genotypes under optimal and post-water deficit conditions; and Study-2 to quantify photosynthetic parameters in 44 guar genotypes and explore inter-relationships with plant growth parameters. In Study-1, the mean net photosynthetic rate (A N) statistically peaked with 1500 μmol (photons) m −2 s −1, though the maximum A N [33.29 μmol (CO2) m−2 s−1] was modeled to occur with 1950 μmol (photons) m −2 s −1. The light compensation point (I comp), dark respiration rate (R D), and maximum quantum yield (Ф(I 0)) were modeled to be 49.9 μmol (photons) m−2 s−1, 2.62 μmol (CO2) m−2 s−1, and 0.0526 μmol (CO2) μmol −1 (photons), respectively. Photosynthesis in guar was resilient to water stress. Despite reductions in growth, specific leaf area (SLA), and other growth parameters, persistently drought-stressed guar plants, on average, exhibited rapid and full recovery of photosynthetic functions when watered. Genotypes differed in their capacity to recover to some degree. In Study-2, A N differed only between two of the 44 genotypes tested, corresponding to the minimum and maximum A N values. There were no relationships between A N and most plant growth parameters. This finding suggested there is low potential to use point measurements of A N as a selection parameter for increased guar productivity.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"37 1","pages":"626 - 646"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Photosynthesis in guar: Recovery from water stress, basic parameter estimates, and intrinsic variation among germplasm\",\"authors\":\"Rajan Shrestha, C. Adams\",\"doi\":\"10.1080/15427528.2022.2121348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Little is known about the photosynthetic physiology of guar (Cyamopsis tetragonoloba L. Taub), a legume crop, including how photosynthetic parameters intrinsically vary among germplasm and their recovery from water stress. To address this, two greenhouse studies were conducted: Study-1 to compare photosynthetic light response (A N–I) curves and related parameters in three contrasting guar genotypes under optimal and post-water deficit conditions; and Study-2 to quantify photosynthetic parameters in 44 guar genotypes and explore inter-relationships with plant growth parameters. In Study-1, the mean net photosynthetic rate (A N) statistically peaked with 1500 μmol (photons) m −2 s −1, though the maximum A N [33.29 μmol (CO2) m−2 s−1] was modeled to occur with 1950 μmol (photons) m −2 s −1. The light compensation point (I comp), dark respiration rate (R D), and maximum quantum yield (Ф(I 0)) were modeled to be 49.9 μmol (photons) m−2 s−1, 2.62 μmol (CO2) m−2 s−1, and 0.0526 μmol (CO2) μmol −1 (photons), respectively. Photosynthesis in guar was resilient to water stress. Despite reductions in growth, specific leaf area (SLA), and other growth parameters, persistently drought-stressed guar plants, on average, exhibited rapid and full recovery of photosynthetic functions when watered. Genotypes differed in their capacity to recover to some degree. In Study-2, A N differed only between two of the 44 genotypes tested, corresponding to the minimum and maximum A N values. There were no relationships between A N and most plant growth parameters. This finding suggested there is low potential to use point measurements of A N as a selection parameter for increased guar productivity.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"37 1\",\"pages\":\"626 - 646\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2022.2121348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2022.2121348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

摘要

瓜尔豆(Cyamopsis tetragonoloba L. Taub)是一种豆科作物,目前对瓜尔豆的光合生理学知之甚少,包括不同种质间光合参数的内在变化及其在水分胁迫下的恢复。为了解决这一问题,进行了两项温室研究:研究1比较了三种不同瓜尔豆基因型在最佳和后亏水条件下的光合光响应(A N-I)曲线和相关参数;和Study-2,量化44个瓜尔豆基因型的光合参数,并探索其与植物生长参数的相互关系。在Study-1中,平均净光合速率(A N)在1500 μmol(光子)m−2 s−1时达到统计峰值,而最大A N [33.29 μmol (CO2) m−2 s−1]在1950 μmol(光子)m−2 s−1时出现。光补偿点(I comp)、暗呼吸速率(R D)和最大量子产率(Ф(I 0))分别为49.9 μmol(光子)m−2 s−1、2.62 μmol (CO2) m−2 s−1和0.0526 μmol (CO2) μmol−1(光子)。瓜尔豆的光合作用对水分胁迫具有弹性。尽管持续干旱胁迫下瓜尔豆的生长、比叶面积(SLA)和其他生长参数有所降低,但平均而言,在浇水后,瓜尔豆的光合功能迅速恢复。基因型在一定程度上恢复能力不同。在Study-2中,测定的44个基因型中,只有2个基因型的氮素存在差异,对应于最小和最大氮素值。氮含量与大部分植物生长参数无显著相关性。这一发现表明,使用氮的点测量作为提高瓜产量的选择参数的潜力很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photosynthesis in guar: Recovery from water stress, basic parameter estimates, and intrinsic variation among germplasm
ABSTRACT Little is known about the photosynthetic physiology of guar (Cyamopsis tetragonoloba L. Taub), a legume crop, including how photosynthetic parameters intrinsically vary among germplasm and their recovery from water stress. To address this, two greenhouse studies were conducted: Study-1 to compare photosynthetic light response (A N–I) curves and related parameters in three contrasting guar genotypes under optimal and post-water deficit conditions; and Study-2 to quantify photosynthetic parameters in 44 guar genotypes and explore inter-relationships with plant growth parameters. In Study-1, the mean net photosynthetic rate (A N) statistically peaked with 1500 μmol (photons) m −2 s −1, though the maximum A N [33.29 μmol (CO2) m−2 s−1] was modeled to occur with 1950 μmol (photons) m −2 s −1. The light compensation point (I comp), dark respiration rate (R D), and maximum quantum yield (Ф(I 0)) were modeled to be 49.9 μmol (photons) m−2 s−1, 2.62 μmol (CO2) m−2 s−1, and 0.0526 μmol (CO2) μmol −1 (photons), respectively. Photosynthesis in guar was resilient to water stress. Despite reductions in growth, specific leaf area (SLA), and other growth parameters, persistently drought-stressed guar plants, on average, exhibited rapid and full recovery of photosynthetic functions when watered. Genotypes differed in their capacity to recover to some degree. In Study-2, A N differed only between two of the 44 genotypes tested, corresponding to the minimum and maximum A N values. There were no relationships between A N and most plant growth parameters. This finding suggested there is low potential to use point measurements of A N as a selection parameter for increased guar productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
7.70%
发文量
42
期刊介绍: Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.
期刊最新文献
Potato disease prediction using machine learning, image processing and IoT – a systematic literature survey Determining morphological and biochemical indices to select for smut-resistant sugarcane varieties Characterization and morphological diversity of sugarcane ( Saccharum officinarum ) genotypes based on descriptor traits Time to treat the climate and nature crisis as one indivisible global health emergency Successful fertility restoration in male-sterile barnase line by optimal expression of barstar gene for hybrid-rice seed production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1