红蓝光交替照射下莴苣(Lactuca sativa L.cv.Greenwave)的光合作用和形态

S. Takasu, H. Shimizu, H. Nakashima, J. Miyasaka, K. Ohdoi
{"title":"红蓝光交替照射下莴苣(Lactuca sativa L.cv.Greenwave)的光合作用和形态","authors":"S. Takasu, H. Shimizu, H. Nakashima, J. Miyasaka, K. Ohdoi","doi":"10.2525/ecb.57.93","DOIUrl":null,"url":null,"abstract":"The mechanism for accelerating leaf lettuce growth by alternating irradiation of red (R) and blue (B) lights was investigated in this study. Leaf lettuce was cultivated under nine light conditions with different time ratios of R/B alternate irradiation; R0B24, R3B21, R6B18, R9B15, R12B12, R15B9, R18B6, R21B3 and R24B0. As a result, R21B3 treatment (21 hours of R irradiation and 3 hours of B irradiation, in an alternating pattern without a dark period) was determined to be the optimum condition for leaf lettuce growth, since shoot fresh weight under this treatment was significantly the highest. Moreover, photosynthetic ability and morphology were studied under alternating irradiation (R21B3 and R12B12) and simultaneous irradiation (RB24; simultaneous irradiation of R and B lights without a dark period). Photosynthetic ability of lettuce grown under R21B3 and R12B12 was significantly higher than that under RB24. A morphological index, PA/LA (Projected Area divided by Leaf Area), was greater in R21B3 and R12B12 than in RB24. This result suggested that alternating irradiation causes plants to have an effective posture for receiving light. Therefore, it seems reasonable to conclude that growth acceleration of plants under alternating radiation was caused by high photosynthetic ability and morphological superiority.","PeriodicalId":85505,"journal":{"name":"Seibutsu kankyo chosetsu. [Environment control in biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Photosynthesis and Morphology of Leaf Lettuce (Lactuca sativa L. cv. Greenwave) Grown under Alternating Irradiation of Red and Blue Light\",\"authors\":\"S. Takasu, H. Shimizu, H. Nakashima, J. Miyasaka, K. Ohdoi\",\"doi\":\"10.2525/ecb.57.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanism for accelerating leaf lettuce growth by alternating irradiation of red (R) and blue (B) lights was investigated in this study. Leaf lettuce was cultivated under nine light conditions with different time ratios of R/B alternate irradiation; R0B24, R3B21, R6B18, R9B15, R12B12, R15B9, R18B6, R21B3 and R24B0. As a result, R21B3 treatment (21 hours of R irradiation and 3 hours of B irradiation, in an alternating pattern without a dark period) was determined to be the optimum condition for leaf lettuce growth, since shoot fresh weight under this treatment was significantly the highest. Moreover, photosynthetic ability and morphology were studied under alternating irradiation (R21B3 and R12B12) and simultaneous irradiation (RB24; simultaneous irradiation of R and B lights without a dark period). Photosynthetic ability of lettuce grown under R21B3 and R12B12 was significantly higher than that under RB24. A morphological index, PA/LA (Projected Area divided by Leaf Area), was greater in R21B3 and R12B12 than in RB24. This result suggested that alternating irradiation causes plants to have an effective posture for receiving light. Therefore, it seems reasonable to conclude that growth acceleration of plants under alternating radiation was caused by high photosynthetic ability and morphological superiority.\",\"PeriodicalId\":85505,\"journal\":{\"name\":\"Seibutsu kankyo chosetsu. [Environment control in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seibutsu kankyo chosetsu. [Environment control in biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2525/ecb.57.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seibutsu kankyo chosetsu. [Environment control in biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2525/ecb.57.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了红蓝交替照射对生菜生长的促进作用机制。在不同R/B交替辐照时间比的9种光照条件下栽培叶莴苣;R0B24、R3B21、R6B18、R9B15、R12B12、R15B9、R18B6、R21B3、R24B0。结果表明,R21B3处理(R照射21小时,B照射3小时,无暗期交替处理)是叶莴苣生长的最佳处理条件,且该处理下茎部鲜重显著最高。交替照射(R21B3和R12B12)和同步照射(RB24;R灯和B灯同时照射,无暗期)。R21B3和R12B12处理下生菜的光合能力显著高于RB24处理。R21B3和R12B12的形态指数PA/LA(投影面积除以叶面积)高于RB24。这一结果表明,交替照射使植物有一个有效的姿态来接受光。因此,认为交变辐射下植物的生长加速是由于光合能力强和形态优势所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photosynthesis and Morphology of Leaf Lettuce (Lactuca sativa L. cv. Greenwave) Grown under Alternating Irradiation of Red and Blue Light
The mechanism for accelerating leaf lettuce growth by alternating irradiation of red (R) and blue (B) lights was investigated in this study. Leaf lettuce was cultivated under nine light conditions with different time ratios of R/B alternate irradiation; R0B24, R3B21, R6B18, R9B15, R12B12, R15B9, R18B6, R21B3 and R24B0. As a result, R21B3 treatment (21 hours of R irradiation and 3 hours of B irradiation, in an alternating pattern without a dark period) was determined to be the optimum condition for leaf lettuce growth, since shoot fresh weight under this treatment was significantly the highest. Moreover, photosynthetic ability and morphology were studied under alternating irradiation (R21B3 and R12B12) and simultaneous irradiation (RB24; simultaneous irradiation of R and B lights without a dark period). Photosynthetic ability of lettuce grown under R21B3 and R12B12 was significantly higher than that under RB24. A morphological index, PA/LA (Projected Area divided by Leaf Area), was greater in R21B3 and R12B12 than in RB24. This result suggested that alternating irradiation causes plants to have an effective posture for receiving light. Therefore, it seems reasonable to conclude that growth acceleration of plants under alternating radiation was caused by high photosynthetic ability and morphological superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allelopathic Characteristic of a Noxious Weed Leptochloa chinensis Manganese Nutrition and Improved Performance of Soybean Inoculated with Rhizobia and Arbuscular Mycorrhizas in Soil with Moderately Elevated Cadmium Drying Method Affects Sugar Content in the Corm of the Medicinal Plant Pinellia ternata Breit. Effect of Monochromatic Red Light of Different Intensities during Growth on Production Efficiency of Vinblastine in Catharanthus roseus with Ultraviolet A Light Irradiation Evaluation of Leaf Contours of the Leaf Lettuce “Greenwave” Using an Elliptic Fourier Descriptor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1