浅埋密煤层多煤层开采后裂隙再开发及渗透率变化

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2023-07-20 DOI:10.24425/ams.2019.129376
Zhenqi Liu, Xiaoxing Zhong, H. Ren, Ang Gao
{"title":"浅埋密煤层多煤层开采后裂隙再开发及渗透率变化","authors":"Zhenqi Liu, Xiaoxing Zhong, H. Ren, Ang Gao","doi":"10.24425/ams.2019.129376","DOIUrl":null,"url":null,"abstract":"Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new compos ite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Redevelopment of Fractures and Permeability Changes after Multi-Seam Mining of Shallow Closely Spaced Coal Seams\",\"authors\":\"Zhenqi Liu, Xiaoxing Zhong, H. Ren, Ang Gao\",\"doi\":\"10.24425/ams.2019.129376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new compos ite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/ams.2019.129376\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2019.129376","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2

摘要

在一系列浅层、紧密间隔的煤层中开采下部煤层会导致上部采空区严重漏气;这很容易加剧废弃煤的自燃。了解裂隙的再发育和渗透率的变化对控制上部采空区煤自燃具有重要意义。根据布连塔矿22307工作面的实际情况,采用粒子流程序(PFC)和相应的物理实验研究了低煤层开采过程中裂缝的再发育和渗透率的变化。结果表明,下煤层开采后,上下采空区连通,形成一个新的复合采空区。随着下煤层的开采和工作面的推进,上覆岩层各区域的渗透率和裂缝数量呈现出“稳定-快速-增加-稳定”的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Redevelopment of Fractures and Permeability Changes after Multi-Seam Mining of Shallow Closely Spaced Coal Seams
Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new compos ite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
Experimental Study of Lignite Structure Evolution Characteristics and Mechanisms under Thermal-Mechanical Co-function Landslide Survey at Cam Mountain (An Giang, Vietnam) by Seismic Refraction and GPR Methods Comparative Testing of Cable Bolt and Wire Rope Lacing Resistance to Static and Dynamic Loads Experimental Study on the Slime Flotation Process of Low-Rank Steam Coal by the Small Cone Angle Hydrocyclone Group Field Testing of the Methods for Prevention and Control of Coal and Gas Outburst – A Case Study in Poland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1