{"title":"高度补偿轴对称超声速喷嘴设计与流动分析","authors":"S. Haif, H. Kbab, Amina Benkhedda","doi":"10.13111/2066-8201.2023.15.2.4","DOIUrl":null,"url":null,"abstract":"Altitude-adapted nozzles are designed to facilitate flow adaptation during rocket ascent in the atmosphere, without requiring mechanical activation. As a consequence, the performance of the nozzle is significantly improved. The aim of this study is to develop a new profile of axisymmetric supersonic nozzles adapted at altitude (Dual Bell Nozzle with Central Body), which is characterized by an E-D nozzle as a basic profile. The performances obtained for this nozzle (E-D Nozzle) are then\ncompared to those of a Plug nozzle. The E-D nozzle shows significant performance advantages over the Plug nozzle, including a 13.02% increase in thrust, knowing that the length of the E-D nozzle is half\nthat of the Plug nozzle under the same design conditions. Finally, viscous calculations using the k-ω SST turbulence model were conducted to compare the performance of the dual bell nozzle with central body (DBNCB) and the E-D nozzle with the same cross-sectional ratio, and to assess the impact of nozzle pressure ratio (NPR) variations on the operation mode of the DBNCB. The results obtained show that the DBNCB offers the best performance in most phases of flight.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altitude-compensating axisymmetric supersonic nozzle design and flow analysis\",\"authors\":\"S. Haif, H. Kbab, Amina Benkhedda\",\"doi\":\"10.13111/2066-8201.2023.15.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Altitude-adapted nozzles are designed to facilitate flow adaptation during rocket ascent in the atmosphere, without requiring mechanical activation. As a consequence, the performance of the nozzle is significantly improved. The aim of this study is to develop a new profile of axisymmetric supersonic nozzles adapted at altitude (Dual Bell Nozzle with Central Body), which is characterized by an E-D nozzle as a basic profile. The performances obtained for this nozzle (E-D Nozzle) are then\\ncompared to those of a Plug nozzle. The E-D nozzle shows significant performance advantages over the Plug nozzle, including a 13.02% increase in thrust, knowing that the length of the E-D nozzle is half\\nthat of the Plug nozzle under the same design conditions. Finally, viscous calculations using the k-ω SST turbulence model were conducted to compare the performance of the dual bell nozzle with central body (DBNCB) and the E-D nozzle with the same cross-sectional ratio, and to assess the impact of nozzle pressure ratio (NPR) variations on the operation mode of the DBNCB. The results obtained show that the DBNCB offers the best performance in most phases of flight.\",\"PeriodicalId\":37556,\"journal\":{\"name\":\"INCAS Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INCAS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13111/2066-8201.2023.15.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Altitude-compensating axisymmetric supersonic nozzle design and flow analysis
Altitude-adapted nozzles are designed to facilitate flow adaptation during rocket ascent in the atmosphere, without requiring mechanical activation. As a consequence, the performance of the nozzle is significantly improved. The aim of this study is to develop a new profile of axisymmetric supersonic nozzles adapted at altitude (Dual Bell Nozzle with Central Body), which is characterized by an E-D nozzle as a basic profile. The performances obtained for this nozzle (E-D Nozzle) are then
compared to those of a Plug nozzle. The E-D nozzle shows significant performance advantages over the Plug nozzle, including a 13.02% increase in thrust, knowing that the length of the E-D nozzle is half
that of the Plug nozzle under the same design conditions. Finally, viscous calculations using the k-ω SST turbulence model were conducted to compare the performance of the dual bell nozzle with central body (DBNCB) and the E-D nozzle with the same cross-sectional ratio, and to assess the impact of nozzle pressure ratio (NPR) variations on the operation mode of the DBNCB. The results obtained show that the DBNCB offers the best performance in most phases of flight.
期刊介绍:
INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.