TraInterSim:自适应和规划感知混合驱动交通交叉口仿真

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2022-10-03 DOI:10.48550/arXiv.2210.08118
Pei Lv, Xinming Pei, Xinyu Ren, Yuzhen Zhang, Chaochao Li, Mingliang Xu
{"title":"TraInterSim:自适应和规划感知混合驱动交通交叉口仿真","authors":"Pei Lv, Xinming Pei, Xinyu Ren, Yuzhen Zhang, Chaochao Li, Mingliang Xu","doi":"10.48550/arXiv.2210.08118","DOIUrl":null,"url":null,"abstract":"Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion plannings and relative distances to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TraInterSim: Adaptive and Planning-Aware Hybrid-Driven Traffic Intersection Simulation\",\"authors\":\"Pei Lv, Xinming Pei, Xinyu Ren, Yuzhen Zhang, Chaochao Li, Mingliang Xu\",\"doi\":\"10.48550/arXiv.2210.08118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion plannings and relative distances to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.08118\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08118","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

交通路口是交通系统中几乎随处可见的重要场景。目前,大多数模拟方法在高速公路和城市交通网络中表现良好。在交叉口场景中,挑战在于缺乏明确定义的车道,具有各种运动规划的代理从不同方向聚集在中心区域。传统的基于模型的方法很难在没有足够的预定义车道的情况下驱动代理在十字路口真实地移动,而数据驱动的方法通常需要大量高质量的输入数据。同时,为了获得所需的仿真结果,不可避免地需要进行繁琐的参数调整。在本文中,我们提出了一种新的自适应和规划感知混合驱动方法(TraInterSim)来模拟交通交叉口场景。我们的混合驱动方法将基于优化的数据驱动方案与速度连续性模型相结合。它使用真实世界的数据指导代理的移动,并可以生成输入数据中不存在的行为。我们的优化方法充分考虑了速度连续性、期望速度、方向引导和计划意识防撞。代理可以感知他人的运动计划和相对距离,以避免可能的碰撞。为了保持不同代理的个体灵活性,我们的方法中的参数在模拟过程中会自动调整。TraInterSim可以在交互速率下生成不同交通路口场景下异构代理的真实行为。通过大量的实验和用户研究,我们验证了所提出的模拟方法的有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TraInterSim: Adaptive and Planning-Aware Hybrid-Driven Traffic Intersection Simulation
Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion plannings and relative distances to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Multi-Level Task Framework for Event Sequence Analysis Who Let the Guards Out: Visual Support for Patrolling Games The Language of Infographics: Toward Understanding Conceptual Metaphor Use in Scientific Storytelling Understanding Visualization Authoring Techniques for Genomics Data in the Context of Personas and Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1