{"title":"分段式开关磁阻电机的集总参数热模型","authors":"Milad Golzarzadeh, Hashem Oraee, Babak Ganji","doi":"10.1049/elp2.12362","DOIUrl":null,"url":null,"abstract":"<p>The segmental translator linear switched reluctance motor (STLSRM) is a special type of linear switched reluctance motor (LSRM) that has more output power than its conventional type. Therefore, it can be a good choice for certain applications. Heat is one of the factors limiting the output in machines. Therefore, predicting the thermal distribution of machine is as important as the magnetic design. A comprehensive thermal model is presented based on the lumped parameter approach for STLSRM, which predicts temperature distribution in different parts of this motor, including slot winding, end-winding, stator pole, stator yoke, and the moving part. Considering that the proposed thermal model depends on dimensions and materials used in machine, it can be used for other designs of the STLSRM. The presented thermal model is applied to a typical STLSRM and temperature is determined in its different parts. The simulation results are then compared with the results of 3-D thermal modelling based on the finite element method (FEM) for validation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12362","citationCount":"0","resultStr":"{\"title\":\"Lumped parameter thermal model for segmental translator linear switched reluctance motor\",\"authors\":\"Milad Golzarzadeh, Hashem Oraee, Babak Ganji\",\"doi\":\"10.1049/elp2.12362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The segmental translator linear switched reluctance motor (STLSRM) is a special type of linear switched reluctance motor (LSRM) that has more output power than its conventional type. Therefore, it can be a good choice for certain applications. Heat is one of the factors limiting the output in machines. Therefore, predicting the thermal distribution of machine is as important as the magnetic design. A comprehensive thermal model is presented based on the lumped parameter approach for STLSRM, which predicts temperature distribution in different parts of this motor, including slot winding, end-winding, stator pole, stator yoke, and the moving part. Considering that the proposed thermal model depends on dimensions and materials used in machine, it can be used for other designs of the STLSRM. The presented thermal model is applied to a typical STLSRM and temperature is determined in its different parts. The simulation results are then compared with the results of 3-D thermal modelling based on the finite element method (FEM) for validation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12362\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12362\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lumped parameter thermal model for segmental translator linear switched reluctance motor
The segmental translator linear switched reluctance motor (STLSRM) is a special type of linear switched reluctance motor (LSRM) that has more output power than its conventional type. Therefore, it can be a good choice for certain applications. Heat is one of the factors limiting the output in machines. Therefore, predicting the thermal distribution of machine is as important as the magnetic design. A comprehensive thermal model is presented based on the lumped parameter approach for STLSRM, which predicts temperature distribution in different parts of this motor, including slot winding, end-winding, stator pole, stator yoke, and the moving part. Considering that the proposed thermal model depends on dimensions and materials used in machine, it can be used for other designs of the STLSRM. The presented thermal model is applied to a typical STLSRM and temperature is determined in its different parts. The simulation results are then compared with the results of 3-D thermal modelling based on the finite element method (FEM) for validation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.