长时间内代谢网络的进化

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2021-12-01 DOI:10.1016/j.coisb.2021.100402
Markus Ralser , Sreejith J. Varma , Richard A. Notebaart
{"title":"长时间内代谢网络的进化","authors":"Markus Ralser ,&nbsp;Sreejith J. Varma ,&nbsp;Richard A. Notebaart","doi":"10.1016/j.coisb.2021.100402","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100402"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000974/pdfft?md5=4bad2063148f98b62f38ae026e235900&pid=1-s2.0-S2452310021000974-main.pdf","citationCount":"3","resultStr":"{\"title\":\"The evolution of the metabolic network over long timelines\",\"authors\":\"Markus Ralser ,&nbsp;Sreejith J. Varma ,&nbsp;Richard A. Notebaart\",\"doi\":\"10.1016/j.coisb.2021.100402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"28 \",\"pages\":\"Article 100402\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000974/pdfft?md5=4bad2063148f98b62f38ae026e235900&pid=1-s2.0-S2452310021000974-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

新陈代谢是由一个有效的、相互联系的、古老的生化系统——代谢网络来完成的。然而,它的进化起源却鲜为人知。我们在这里讨论了由于生态位适应,作用于代谢网络结构的进化选择区分了现代物种和早期生命形式。然而,它的基本结构在30多亿年的分化进化中仍然保持不变。我们推测,这种情况将代谢网络进化的关键作用归因于(i)中心代谢物的反应性质,(ii)在进化过程中重要性保持不变的简单催化剂(如金属离子、氨基酸),以及(iii)限制其扩展的网络互连性。因此,网络结构的守恒意味着早期的生命形式已经使用了与现代物种相似的代谢反应拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The evolution of the metabolic network over long timelines

Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1