光周期通过Nrf2-Keap1信号通路影响barabensis肝脏氧化应激

IF 1 4区 生物学 Q3 BIOLOGY Biological Rhythm Research Pub Date : 2023-08-30 DOI:10.1080/09291016.2023.2252221
Xingping Wang, Zhe Wang, Chuan-Li Wang, Huiliang Xue, Ming Wu, Lei Chen, Chao Fan, Jin-hui Xu, Laixiang Xu
{"title":"光周期通过Nrf2-Keap1信号通路影响barabensis肝脏氧化应激","authors":"Xingping Wang, Zhe Wang, Chuan-Li Wang, Huiliang Xue, Ming Wu, Lei Chen, Chao Fan, Jin-hui Xu, Laixiang Xu","doi":"10.1080/09291016.2023.2252221","DOIUrl":null,"url":null,"abstract":"ABSTRACT Changes in photoperiod affect both oxidative stress (OS) levels and antioxidant enzyme activities in animals. The liver accounts for a vital body metabolic organ. Different light durations may produce different outcomes in terms of OS and liver antioxidant pathways, but the underlying mechanism is not yet understood. This study investigated the effects of diverse photoperiods (SD, short day; MD, moderate day; LD, long day) on OS degree (H2O2 and MDA), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]), liver total antioxidant capacity, and the Nrf2-Keap1 signaling pathway in striped dwarf hamsters (Cricetulus barabensis) livers. Our results showed that (1) SD treatment for 8 weeks increased the levels of phosphorylated Nrf2, upregulated the Nrf2-Keap1 signaling pathway, and increased the protein expression of SOD and GPx, while decreasing the MDA concentration, all of which reduced the OS degree. (2) Additionally, LD treatment for 8 weeks reduced the extent of Nrf2 phosphorylation, resulting in downregulation of the Nrf2-Keap1 pathway, thus reducing protein expression of SOD2 and CAT, increasing the concentrations of H2O2 and MDA, and increasing OS degree. Collectively, OS levels in C. barabensis liver decreased during SD but increased during LD.","PeriodicalId":9208,"journal":{"name":"Biological Rhythm Research","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoperiod affects oxidative stress in the liver of Cricetulus barabensis through the Nrf2-Keap1 signaling pathway\",\"authors\":\"Xingping Wang, Zhe Wang, Chuan-Li Wang, Huiliang Xue, Ming Wu, Lei Chen, Chao Fan, Jin-hui Xu, Laixiang Xu\",\"doi\":\"10.1080/09291016.2023.2252221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Changes in photoperiod affect both oxidative stress (OS) levels and antioxidant enzyme activities in animals. The liver accounts for a vital body metabolic organ. Different light durations may produce different outcomes in terms of OS and liver antioxidant pathways, but the underlying mechanism is not yet understood. This study investigated the effects of diverse photoperiods (SD, short day; MD, moderate day; LD, long day) on OS degree (H2O2 and MDA), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]), liver total antioxidant capacity, and the Nrf2-Keap1 signaling pathway in striped dwarf hamsters (Cricetulus barabensis) livers. Our results showed that (1) SD treatment for 8 weeks increased the levels of phosphorylated Nrf2, upregulated the Nrf2-Keap1 signaling pathway, and increased the protein expression of SOD and GPx, while decreasing the MDA concentration, all of which reduced the OS degree. (2) Additionally, LD treatment for 8 weeks reduced the extent of Nrf2 phosphorylation, resulting in downregulation of the Nrf2-Keap1 pathway, thus reducing protein expression of SOD2 and CAT, increasing the concentrations of H2O2 and MDA, and increasing OS degree. Collectively, OS levels in C. barabensis liver decreased during SD but increased during LD.\",\"PeriodicalId\":9208,\"journal\":{\"name\":\"Biological Rhythm Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Rhythm Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09291016.2023.2252221\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Rhythm Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09291016.2023.2252221","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photoperiod affects oxidative stress in the liver of Cricetulus barabensis through the Nrf2-Keap1 signaling pathway
ABSTRACT Changes in photoperiod affect both oxidative stress (OS) levels and antioxidant enzyme activities in animals. The liver accounts for a vital body metabolic organ. Different light durations may produce different outcomes in terms of OS and liver antioxidant pathways, but the underlying mechanism is not yet understood. This study investigated the effects of diverse photoperiods (SD, short day; MD, moderate day; LD, long day) on OS degree (H2O2 and MDA), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]), liver total antioxidant capacity, and the Nrf2-Keap1 signaling pathway in striped dwarf hamsters (Cricetulus barabensis) livers. Our results showed that (1) SD treatment for 8 weeks increased the levels of phosphorylated Nrf2, upregulated the Nrf2-Keap1 signaling pathway, and increased the protein expression of SOD and GPx, while decreasing the MDA concentration, all of which reduced the OS degree. (2) Additionally, LD treatment for 8 weeks reduced the extent of Nrf2 phosphorylation, resulting in downregulation of the Nrf2-Keap1 pathway, thus reducing protein expression of SOD2 and CAT, increasing the concentrations of H2O2 and MDA, and increasing OS degree. Collectively, OS levels in C. barabensis liver decreased during SD but increased during LD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Rhythm Research
Biological Rhythm Research 生物-生理学
CiteScore
3.00
自引率
9.10%
发文量
34
审稿时长
6-12 weeks
期刊介绍: The principal aim of Biological Rhythm Research is to cover any aspect of research into the broad topic of biological rhythms. The area covered can range from studies at the genetic or molecular level to those of behavioural or clinical topics. It can also include ultradian, circadian, infradian or annual rhythms. In this way, the Editorial Board tries to stimulate interdisciplinary rhythm research. Such an aim reflects not only the similarity of the methods used in different fields of chronobiology, but also the fact that many influences that exert controlling or masking effects are common. Amongst the controlling factors, attention is paid to the effects of climate change on living organisms. So, papers dealing with biometeorological aspects can also be submitted. The Journal publishes original scientific research papers, review papers, short notes on research in progress, book reviews and summaries of activities, symposia and congresses of national and international organizations dealing with rhythmic phenomena.
期刊最新文献
Seasonal influence on reproductive traits in Gir (Bos indicus) heifers Hidden complexity of biological clocks that adapt to external control and internal regulation: a case study on body temperature simulation Sleep assessment in patients after surgery: a systematic review Modulation of peripheral circadian clocks – impact on metabolic activity: a state of science review The effects of time of day on technical and physical performances in female tennis players
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1