G. Revuelta, Corinne McGill, J. Jensen, L. Bonilha
{"title":"用扩散峰度成像描记术表征原发性震颤的丘脑皮质结构连接","authors":"G. Revuelta, Corinne McGill, J. Jensen, L. Bonilha","doi":"10.7916/tohm.v0.690","DOIUrl":null,"url":null,"abstract":"Background Neuromodulation of the cerebello-thalamo-cortical (CTC) circuit via thalamic stimulation is an effective therapy for essential tremor (ET). In order to develop non-invasive neuromodulation approaches, clinically relevant thalamo-cortical connections must be elucidated. Methods Twenty-eight subjects (18 ET patients and 10 controls) underwent MRI diffusional kurtosis imaging (DKI). A deterministic fiber-tracking algorithm based on DKI was used, with a seeding region placed at the ventral intermediate nucleus (Vim—located based on intraoperative physiology) to the ending regions at the supplementary motor area (SMA), pre-SMA, or primary motor cortex. One-tailed t-tests were performed to compare groups, and associations with tremor severity were determined by Pearson correlations. All p-values were adjusted for multiple comparisons using Bonferroni correction. Results There was a decrease in the mean diffusivity (MD) in patients compared to controls in all three tracts: Vim-M1 (ET 0.87, control 0.96, p < 0.01), Vim-SMA (ET 0.86, control 0.96, p < 0.05), and Vim-pre-SMA (ET 0.87, control 0.95, p < 0.05). There was a significant positive correlation between Tremor Rating Scale score and MK (r = 0.471, p = 0.033) and mean FA (r = 0.438, p = 0.045) for the Vim-SMA tract, and no significant correlation for the Vim-pre-SMA or Vim-M1 tracts was found. Discussion Patients with ET demonstrated a reinforcement of Vim-cortical connectivity, with higher Vim-SMA connectivity being associated with greater tremor severity. This finding suggests that the Vim-SMA connection is relevant to the underlying pathophysiology of ET, and inhibition of the SMA may be an effective therapeutic approach.","PeriodicalId":23317,"journal":{"name":"Tremor and Other Hyperkinetic Movements","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography\",\"authors\":\"G. Revuelta, Corinne McGill, J. Jensen, L. Bonilha\",\"doi\":\"10.7916/tohm.v0.690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Neuromodulation of the cerebello-thalamo-cortical (CTC) circuit via thalamic stimulation is an effective therapy for essential tremor (ET). In order to develop non-invasive neuromodulation approaches, clinically relevant thalamo-cortical connections must be elucidated. Methods Twenty-eight subjects (18 ET patients and 10 controls) underwent MRI diffusional kurtosis imaging (DKI). A deterministic fiber-tracking algorithm based on DKI was used, with a seeding region placed at the ventral intermediate nucleus (Vim—located based on intraoperative physiology) to the ending regions at the supplementary motor area (SMA), pre-SMA, or primary motor cortex. One-tailed t-tests were performed to compare groups, and associations with tremor severity were determined by Pearson correlations. All p-values were adjusted for multiple comparisons using Bonferroni correction. Results There was a decrease in the mean diffusivity (MD) in patients compared to controls in all three tracts: Vim-M1 (ET 0.87, control 0.96, p < 0.01), Vim-SMA (ET 0.86, control 0.96, p < 0.05), and Vim-pre-SMA (ET 0.87, control 0.95, p < 0.05). There was a significant positive correlation between Tremor Rating Scale score and MK (r = 0.471, p = 0.033) and mean FA (r = 0.438, p = 0.045) for the Vim-SMA tract, and no significant correlation for the Vim-pre-SMA or Vim-M1 tracts was found. Discussion Patients with ET demonstrated a reinforcement of Vim-cortical connectivity, with higher Vim-SMA connectivity being associated with greater tremor severity. This finding suggests that the Vim-SMA connection is relevant to the underlying pathophysiology of ET, and inhibition of the SMA may be an effective therapeutic approach.\",\"PeriodicalId\":23317,\"journal\":{\"name\":\"Tremor and Other Hyperkinetic Movements\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tremor and Other Hyperkinetic Movements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7916/tohm.v0.690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tremor and Other Hyperkinetic Movements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7916/tohm.v0.690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography
Background Neuromodulation of the cerebello-thalamo-cortical (CTC) circuit via thalamic stimulation is an effective therapy for essential tremor (ET). In order to develop non-invasive neuromodulation approaches, clinically relevant thalamo-cortical connections must be elucidated. Methods Twenty-eight subjects (18 ET patients and 10 controls) underwent MRI diffusional kurtosis imaging (DKI). A deterministic fiber-tracking algorithm based on DKI was used, with a seeding region placed at the ventral intermediate nucleus (Vim—located based on intraoperative physiology) to the ending regions at the supplementary motor area (SMA), pre-SMA, or primary motor cortex. One-tailed t-tests were performed to compare groups, and associations with tremor severity were determined by Pearson correlations. All p-values were adjusted for multiple comparisons using Bonferroni correction. Results There was a decrease in the mean diffusivity (MD) in patients compared to controls in all three tracts: Vim-M1 (ET 0.87, control 0.96, p < 0.01), Vim-SMA (ET 0.86, control 0.96, p < 0.05), and Vim-pre-SMA (ET 0.87, control 0.95, p < 0.05). There was a significant positive correlation between Tremor Rating Scale score and MK (r = 0.471, p = 0.033) and mean FA (r = 0.438, p = 0.045) for the Vim-SMA tract, and no significant correlation for the Vim-pre-SMA or Vim-M1 tracts was found. Discussion Patients with ET demonstrated a reinforcement of Vim-cortical connectivity, with higher Vim-SMA connectivity being associated with greater tremor severity. This finding suggests that the Vim-SMA connection is relevant to the underlying pathophysiology of ET, and inhibition of the SMA may be an effective therapeutic approach.