Benjamin Reimeir, Maité Calisti, Ronja Mittermeier, Lennart Ralfs, Robert Weidner
{"title":"不同功能机制的背部支撑外骨骼对躯干肌肉活动和运动学的影响","authors":"Benjamin Reimeir, Maité Calisti, Ronja Mittermeier, Lennart Ralfs, Robert Weidner","doi":"10.1017/wtc.2023.5","DOIUrl":null,"url":null,"abstract":"<p><p>Musculoskeletal disorders constitute the leading work-related health issue. Mechanical loading of the lower back contributes as a major risk factor and is prevalent in many tasks performed in logistics. The study aimed to compare acute effects of exoskeletons with different functional mechanisms in a logistic task. Twelve young, healthy individuals participated in the study. Five exoskeletons with different functional mechanisms were tested in a logistic task, consisting of lifting, carrying, and lowering a 13 kg box. By using electromyography (EMG), mean muscle activities of four muscles in the trunk were analyzed. Additionally, kinematics by task completion time and range of motion (RoM) of the major joints and segments were investigated. A main effect was found for <i>Musculus erector spinae</i>, <i>Musculus multifidus</i>, and <i>Musculus latissimus dorsi</i> showing differences in muscle activity reductions between exoskeletons. Reduction in ES mean activity compared to baseline was primarily during lifting from ground level. The exoskeletons SoftExo Lift and Cray X also showed ES mean reduction during lowering the box. Prolonged task duration during the lifting phase was found for the exoskeletons BionicBack, SoftExo Lift, and Japet.W. Japet.W showed a trend in reducing hip RoM during that phase. SoftExo Lift caused a reduction in trunk flexion during the lifting phase. A stronger trunk inclination was only found during lifting from the table for the SoftExo Lift and the Cray X. In conclusion, muscle activity reductions by exoskeleton use should not be assessed without taking their designed force paths into account to correctly interpret the effects for long-term injury prevention.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of back-support exoskeletons with different functional mechanisms on trunk muscle activity and kinematics.\",\"authors\":\"Benjamin Reimeir, Maité Calisti, Ronja Mittermeier, Lennart Ralfs, Robert Weidner\",\"doi\":\"10.1017/wtc.2023.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Musculoskeletal disorders constitute the leading work-related health issue. Mechanical loading of the lower back contributes as a major risk factor and is prevalent in many tasks performed in logistics. The study aimed to compare acute effects of exoskeletons with different functional mechanisms in a logistic task. Twelve young, healthy individuals participated in the study. Five exoskeletons with different functional mechanisms were tested in a logistic task, consisting of lifting, carrying, and lowering a 13 kg box. By using electromyography (EMG), mean muscle activities of four muscles in the trunk were analyzed. Additionally, kinematics by task completion time and range of motion (RoM) of the major joints and segments were investigated. A main effect was found for <i>Musculus erector spinae</i>, <i>Musculus multifidus</i>, and <i>Musculus latissimus dorsi</i> showing differences in muscle activity reductions between exoskeletons. Reduction in ES mean activity compared to baseline was primarily during lifting from ground level. The exoskeletons SoftExo Lift and Cray X also showed ES mean reduction during lowering the box. Prolonged task duration during the lifting phase was found for the exoskeletons BionicBack, SoftExo Lift, and Japet.W. Japet.W showed a trend in reducing hip RoM during that phase. SoftExo Lift caused a reduction in trunk flexion during the lifting phase. A stronger trunk inclination was only found during lifting from the table for the SoftExo Lift and the Cray X. In conclusion, muscle activity reductions by exoskeleton use should not be assessed without taking their designed force paths into account to correctly interpret the effects for long-term injury prevention.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2023.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effects of back-support exoskeletons with different functional mechanisms on trunk muscle activity and kinematics.
Musculoskeletal disorders constitute the leading work-related health issue. Mechanical loading of the lower back contributes as a major risk factor and is prevalent in many tasks performed in logistics. The study aimed to compare acute effects of exoskeletons with different functional mechanisms in a logistic task. Twelve young, healthy individuals participated in the study. Five exoskeletons with different functional mechanisms were tested in a logistic task, consisting of lifting, carrying, and lowering a 13 kg box. By using electromyography (EMG), mean muscle activities of four muscles in the trunk were analyzed. Additionally, kinematics by task completion time and range of motion (RoM) of the major joints and segments were investigated. A main effect was found for Musculus erector spinae, Musculus multifidus, and Musculus latissimus dorsi showing differences in muscle activity reductions between exoskeletons. Reduction in ES mean activity compared to baseline was primarily during lifting from ground level. The exoskeletons SoftExo Lift and Cray X also showed ES mean reduction during lowering the box. Prolonged task duration during the lifting phase was found for the exoskeletons BionicBack, SoftExo Lift, and Japet.W. Japet.W showed a trend in reducing hip RoM during that phase. SoftExo Lift caused a reduction in trunk flexion during the lifting phase. A stronger trunk inclination was only found during lifting from the table for the SoftExo Lift and the Cray X. In conclusion, muscle activity reductions by exoskeleton use should not be assessed without taking their designed force paths into account to correctly interpret the effects for long-term injury prevention.