Geovanne Farell, N. Jalinus, Asmar Yulastri, S. Rahmadika, Rido Wahyudi
{"title":"实验室设备折旧的监督学习预测分析","authors":"Geovanne Farell, N. Jalinus, Asmar Yulastri, S. Rahmadika, Rido Wahyudi","doi":"10.18421/tem123-33","DOIUrl":null,"url":null,"abstract":"Asset management in Indonesia still poses problems in terms of securing state-owned property. These concerns make it difficult for analysts to predict laboratory equipment depreciation. Therefore, this research aims to create a new model to address this issue. Additionally, to support laboratory managers in gaining insights, a technology-based framework in the form of a laboratory equipment depreciation prediction model has been developed. A new model has been created in this research, which integrates supervised learning models with linear regression algorithms, and subsequently employs a waterfall system development approach. The testing results of the model for predicting laboratory equipment depreciation showed a high level of accuracy, reaching 93%. Furthermore, the comparison between the prediction model and the laboratory equipment data tested directly by technicians demonstrated an accuracy rate of 100%. Finally, the numerical results demonstrate that our framework provides a valuable solution to the difficulties in predicting laboratory equipment depreciation, offering an innovative and practical approach to laboratory equipment maintenance.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction Analysis of Laboratory Equipment Depreciation Using Supervised Learning Methods\",\"authors\":\"Geovanne Farell, N. Jalinus, Asmar Yulastri, S. Rahmadika, Rido Wahyudi\",\"doi\":\"10.18421/tem123-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asset management in Indonesia still poses problems in terms of securing state-owned property. These concerns make it difficult for analysts to predict laboratory equipment depreciation. Therefore, this research aims to create a new model to address this issue. Additionally, to support laboratory managers in gaining insights, a technology-based framework in the form of a laboratory equipment depreciation prediction model has been developed. A new model has been created in this research, which integrates supervised learning models with linear regression algorithms, and subsequently employs a waterfall system development approach. The testing results of the model for predicting laboratory equipment depreciation showed a high level of accuracy, reaching 93%. Furthermore, the comparison between the prediction model and the laboratory equipment data tested directly by technicians demonstrated an accuracy rate of 100%. Finally, the numerical results demonstrate that our framework provides a valuable solution to the difficulties in predicting laboratory equipment depreciation, offering an innovative and practical approach to laboratory equipment maintenance.\",\"PeriodicalId\":45439,\"journal\":{\"name\":\"TEM Journal-Technology Education Management Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal-Technology Education Management Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem123-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem123-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Prediction Analysis of Laboratory Equipment Depreciation Using Supervised Learning Methods
Asset management in Indonesia still poses problems in terms of securing state-owned property. These concerns make it difficult for analysts to predict laboratory equipment depreciation. Therefore, this research aims to create a new model to address this issue. Additionally, to support laboratory managers in gaining insights, a technology-based framework in the form of a laboratory equipment depreciation prediction model has been developed. A new model has been created in this research, which integrates supervised learning models with linear regression algorithms, and subsequently employs a waterfall system development approach. The testing results of the model for predicting laboratory equipment depreciation showed a high level of accuracy, reaching 93%. Furthermore, the comparison between the prediction model and the laboratory equipment data tested directly by technicians demonstrated an accuracy rate of 100%. Finally, the numerical results demonstrate that our framework provides a valuable solution to the difficulties in predicting laboratory equipment depreciation, offering an innovative and practical approach to laboratory equipment maintenance.
期刊介绍:
TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management