Gregory S. Berlin, A. Mathew, Salahadin Lotfi, Ashleigh M. Harvey, Han-Joo Lee
{"title":"评估在线tDCS与情绪n-back训练对工作记忆及相关认知能力的影响","authors":"Gregory S. Berlin, A. Mathew, Salahadin Lotfi, Ashleigh M. Harvey, Han-Joo Lee","doi":"10.15540/NR.7.3.129","DOIUrl":null,"url":null,"abstract":"Working memory (WM) is a core cognitive ability important for everyday functioning. A burgeoning area of research suggests that WM can be improved via working memory training (WMT) paradigms. Additionally, recent research has shown that WM may be enhanced through noninvasive neuromodulation such as transcranial direct current stimulation (tDCS). In this study, we evaluated how a single-session, brief-but-concentrated combination of tDCS over the left dorsolateral prefrontal cortex (dlPFC; F3 region), paired with a WMT paradigm utilizing emotional stimuli (emotional n- back) could produce gains in WM and associated, untrained cognitive abilities. Healthy undergraduate participants were randomized to receive either active tDCS and WMT, or sham-tDCS and WMT. Cognitive abilities (WM, attention control, and cognitive inhibition) were measured before and after the intervention. No significant differences were found in WM performance or associated abilities between those who received active or sham tDCS. Individuals in both groups evidenced a faster reaction time on an Operation Span task, and an Emotional Stroop Task, following the WMT session. These findings add to the mixed picture of the effectiveness of single-session WMT protocols and highlight the importance of the dose-response relationship in training core cognitive processes such as WM.","PeriodicalId":37439,"journal":{"name":"NeuroRegulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Effects of Online tDCS with Emotional n-back Training on Working Memory and Associated Cognitive Abilities\",\"authors\":\"Gregory S. Berlin, A. Mathew, Salahadin Lotfi, Ashleigh M. Harvey, Han-Joo Lee\",\"doi\":\"10.15540/NR.7.3.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working memory (WM) is a core cognitive ability important for everyday functioning. A burgeoning area of research suggests that WM can be improved via working memory training (WMT) paradigms. Additionally, recent research has shown that WM may be enhanced through noninvasive neuromodulation such as transcranial direct current stimulation (tDCS). In this study, we evaluated how a single-session, brief-but-concentrated combination of tDCS over the left dorsolateral prefrontal cortex (dlPFC; F3 region), paired with a WMT paradigm utilizing emotional stimuli (emotional n- back) could produce gains in WM and associated, untrained cognitive abilities. Healthy undergraduate participants were randomized to receive either active tDCS and WMT, or sham-tDCS and WMT. Cognitive abilities (WM, attention control, and cognitive inhibition) were measured before and after the intervention. No significant differences were found in WM performance or associated abilities between those who received active or sham tDCS. Individuals in both groups evidenced a faster reaction time on an Operation Span task, and an Emotional Stroop Task, following the WMT session. These findings add to the mixed picture of the effectiveness of single-session WMT protocols and highlight the importance of the dose-response relationship in training core cognitive processes such as WM.\",\"PeriodicalId\":37439,\"journal\":{\"name\":\"NeuroRegulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRegulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15540/NR.7.3.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRegulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15540/NR.7.3.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Evaluating the Effects of Online tDCS with Emotional n-back Training on Working Memory and Associated Cognitive Abilities
Working memory (WM) is a core cognitive ability important for everyday functioning. A burgeoning area of research suggests that WM can be improved via working memory training (WMT) paradigms. Additionally, recent research has shown that WM may be enhanced through noninvasive neuromodulation such as transcranial direct current stimulation (tDCS). In this study, we evaluated how a single-session, brief-but-concentrated combination of tDCS over the left dorsolateral prefrontal cortex (dlPFC; F3 region), paired with a WMT paradigm utilizing emotional stimuli (emotional n- back) could produce gains in WM and associated, untrained cognitive abilities. Healthy undergraduate participants were randomized to receive either active tDCS and WMT, or sham-tDCS and WMT. Cognitive abilities (WM, attention control, and cognitive inhibition) were measured before and after the intervention. No significant differences were found in WM performance or associated abilities between those who received active or sham tDCS. Individuals in both groups evidenced a faster reaction time on an Operation Span task, and an Emotional Stroop Task, following the WMT session. These findings add to the mixed picture of the effectiveness of single-session WMT protocols and highlight the importance of the dose-response relationship in training core cognitive processes such as WM.
期刊介绍:
NeuroRegulation is a peer-reviewed journal providing an integrated, multidisciplinary perspective on clinically relevant research, treatment, reviews, and public policy for neuroregulation and neurotherapy. NeuroRegulation publishes important findings in these fields with a focus on electroencephalography (EEG), neurofeedback (EEG biofeedback), quantitative electroencephalography (qEEG), psychophysiology, biofeedback, heart rate variability, photobiomodulation, repetitive Transcranial Magnetic Simulation (rTMS) and transcranial Direct Current Stimulation (tDCS); with a focus on treatment of psychiatric, mind-body, and neurological disorders. In addition to research findings and reviews, it is important to stress that publication of case reports is always useful in furthering the advancement of an intervention for both clinical and normative functioning. We strive for high quality and interesting empirical topics presented in a rigorous and scholarly manner. The journal draws from expertise inside and outside of the International Society for Neurofeedback & Research (ISNR) to deliver material which integrates the diverse aspects of the field, to include: *basic science *clinical aspects *treatment evaluation *philosophy *training and certification issues *technology and equipment