Elisabeth Russell, C. A. Rutland, Jinesh D. Patel, N. Hall, Bo Bi, Xiao Li, J. S. McElroy
{"title":"木瓜α-微管蛋白Thr239-Ile突变诱导对丙二胺和双硫吡菌素的不同反应","authors":"Elisabeth Russell, C. A. Rutland, Jinesh D. Patel, N. Hall, Bo Bi, Xiao Li, J. S. McElroy","doi":"10.1017/wsc.2023.39","DOIUrl":null,"url":null,"abstract":"\n Mitotic-inhibiting herbicides, like prodiamine and dithiopyr, are used to control annual bluegrass (Poa annua L.) preemergence in managed turfgrass; however, resistance to mitotic-inhibiting herbicides has evolved due to repeated applications of herbicide from a single mechanism of action. Three suspected resistant populations (R1, R2, and R3) were collected in Alabama and Florida and screened for resistance to prodiamine. Part of the α-tubulin gene was sequenced for known target-site mutations. Target-site mutations were reported in all three R populations, with each of them containing an amino acid substitution at position 239 from threonine to isoleucine (Thr239-Ile). Previous research has indicated that the Thr239-Ile mutation confers resistance to dinitroaniline herbicides in other species. Dose response screens using prodiamine and dithiopyr were conducted and I50 values were calculated for R1, R2, and R3 using regression models based on seedling emergence. For prodiamine, I50 values for R1, R2, and R3 were 35.3, 502.7, and 91.5 g ai ha-1, respectively, resulting in 2.9-, 41.9-, and 7.6-fold resistance, respectively, when compared to a susceptible (S) population. For dithiopyr, I50 values for R1, R2, and R3 were 154.0, 114.2, and 190.1 g ai ha-1, respectively, resulting in 3.6-, 2.7-, and 4.5-fold resistance, respectively, when compared to a S population. When comparing I90 values to the highest labeled use rates, R2 had a 2.9-fold level of resistance to prodiamine and R1, R2, and R3 had a 2.4-, 2.0-, and 3.2-fold level of resistance to dithiopyr, respectively. This is the first report of a variable response in P. annua to prodiamine despite each R population possessing the same mutation.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-tubulin Mutation Thr239-Ile in Poa annua Induces Variable Responses to Prodiamine and Dithiopyr\",\"authors\":\"Elisabeth Russell, C. A. Rutland, Jinesh D. Patel, N. Hall, Bo Bi, Xiao Li, J. S. McElroy\",\"doi\":\"10.1017/wsc.2023.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mitotic-inhibiting herbicides, like prodiamine and dithiopyr, are used to control annual bluegrass (Poa annua L.) preemergence in managed turfgrass; however, resistance to mitotic-inhibiting herbicides has evolved due to repeated applications of herbicide from a single mechanism of action. Three suspected resistant populations (R1, R2, and R3) were collected in Alabama and Florida and screened for resistance to prodiamine. Part of the α-tubulin gene was sequenced for known target-site mutations. Target-site mutations were reported in all three R populations, with each of them containing an amino acid substitution at position 239 from threonine to isoleucine (Thr239-Ile). Previous research has indicated that the Thr239-Ile mutation confers resistance to dinitroaniline herbicides in other species. Dose response screens using prodiamine and dithiopyr were conducted and I50 values were calculated for R1, R2, and R3 using regression models based on seedling emergence. For prodiamine, I50 values for R1, R2, and R3 were 35.3, 502.7, and 91.5 g ai ha-1, respectively, resulting in 2.9-, 41.9-, and 7.6-fold resistance, respectively, when compared to a susceptible (S) population. For dithiopyr, I50 values for R1, R2, and R3 were 154.0, 114.2, and 190.1 g ai ha-1, respectively, resulting in 3.6-, 2.7-, and 4.5-fold resistance, respectively, when compared to a S population. When comparing I90 values to the highest labeled use rates, R2 had a 2.9-fold level of resistance to prodiamine and R1, R2, and R3 had a 2.4-, 2.0-, and 3.2-fold level of resistance to dithiopyr, respectively. This is the first report of a variable response in P. annua to prodiamine despite each R population possessing the same mutation.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2023.39\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2023.39","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
有丝分裂抑制除草剂,如丙二胺和双硫吡虫啉,用于控制一年生蓝草(Poa annua L.)在管理草坪上的早熟;然而,对有丝分裂抑制除草剂的抗性是由于除草剂的重复施用而从单一的作用机制演变而来的。在阿拉巴马州和佛罗里达州收集了3个疑似耐药种群(R1、R2和R3),并进行了对丙二胺的耐药性筛选。对部分α-微管蛋白基因进行了已知靶位点突变的测序。在所有三个R群体中都报道了靶位点突变,每个群体的239位都包含一个从苏氨酸到异亮氨酸的氨基酸替换(Thr239-Ile)。先前的研究表明,Thr239-Ile突变使其他物种对二硝基苯胺类除草剂产生抗性。分别使用丙二胺和硫吡菌酯进行剂量反应筛选,并利用基于幼苗出苗的回归模型计算R1、R2和R3的I50值。对于丙二胺,R1、R2和R3的I50值分别为35.3、502.7和91.5 g / ha-1,与易感人群(S)相比,抗性分别为2.9倍、41.9倍和7.6倍。对于吡硫磷,R1、R2和R3的I50值分别为154.0、114.2和190.1 g / ha-1,与S群体相比,抗性分别为3.6倍、2.7倍和4.5倍。当将I90值与最高标记使用率进行比较时,R2对丙二胺的抗性水平为2.9倍,R1, R2和R3对双硫吡菌素的抗性水平分别为2.4倍,2.0倍和3.2倍。尽管每个R种群具有相同的突变,但这是第一次报道P. annua对原丙胺的不同反应。
α-tubulin Mutation Thr239-Ile in Poa annua Induces Variable Responses to Prodiamine and Dithiopyr
Mitotic-inhibiting herbicides, like prodiamine and dithiopyr, are used to control annual bluegrass (Poa annua L.) preemergence in managed turfgrass; however, resistance to mitotic-inhibiting herbicides has evolved due to repeated applications of herbicide from a single mechanism of action. Three suspected resistant populations (R1, R2, and R3) were collected in Alabama and Florida and screened for resistance to prodiamine. Part of the α-tubulin gene was sequenced for known target-site mutations. Target-site mutations were reported in all three R populations, with each of them containing an amino acid substitution at position 239 from threonine to isoleucine (Thr239-Ile). Previous research has indicated that the Thr239-Ile mutation confers resistance to dinitroaniline herbicides in other species. Dose response screens using prodiamine and dithiopyr were conducted and I50 values were calculated for R1, R2, and R3 using regression models based on seedling emergence. For prodiamine, I50 values for R1, R2, and R3 were 35.3, 502.7, and 91.5 g ai ha-1, respectively, resulting in 2.9-, 41.9-, and 7.6-fold resistance, respectively, when compared to a susceptible (S) population. For dithiopyr, I50 values for R1, R2, and R3 were 154.0, 114.2, and 190.1 g ai ha-1, respectively, resulting in 3.6-, 2.7-, and 4.5-fold resistance, respectively, when compared to a S population. When comparing I90 values to the highest labeled use rates, R2 had a 2.9-fold level of resistance to prodiamine and R1, R2, and R3 had a 2.4-, 2.0-, and 3.2-fold level of resistance to dithiopyr, respectively. This is the first report of a variable response in P. annua to prodiamine despite each R population possessing the same mutation.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.