{"title":"脉冲切换过氧混凝法降解1,4-二恶烷","authors":"Yaobin Lu, Hua-Yun Shi, Jialiang Yao, Guangli Liu, Hai-ping Luo, Renduo Zhang","doi":"10.2166/WRD.2021.092","DOIUrl":null,"url":null,"abstract":"\n Widely used in chemical product manufacture, 1,4-dioxane is one of the emerging contaminants, and it poses great risk to human health and the ecosystem. The aim of this study was to degrade 1,4-dioxiane using a pulsed switching peroxi-coagulation (PSPC) process. The electrosynthesis of H2O2 on cathode and Fe2+ production on iron sacrifice anode were optimized to enhance the 1,4-dioxane degradation. Under current densities of 5 mA/cm2 (H2O2) and 1 mA/cm2 (Fe2+), 95.3 ± 2.2% of 200 mg/L 1,4-dioxane was removed at the end of 120 min operation with the optimal pulsed switching frequency of 1.43 Hz and pH of 5.0. The low residual H2O2 and Fe2+ concentrations were attributed to the high pulsed switching frequency in the PSPC process, resulting in effectively inhibiting the side reaction during the ·OH production and improving the 1,4-dioxane removal with low energy consumption. At 120 min, the minimum energy consumption in the PSPC process was less than 20% of that in the conventional electro-Fenton process (7.8 ± 0.1 vs. 47.0 ± 0.6 kWh/kg). The PSPC should be a promising alternative for enhancing 1,4-dioxane removal in the real wastewater treatment.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"1,4-dioxane degradation using a pulsed switching peroxi-coagulation process\",\"authors\":\"Yaobin Lu, Hua-Yun Shi, Jialiang Yao, Guangli Liu, Hai-ping Luo, Renduo Zhang\",\"doi\":\"10.2166/WRD.2021.092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Widely used in chemical product manufacture, 1,4-dioxane is one of the emerging contaminants, and it poses great risk to human health and the ecosystem. The aim of this study was to degrade 1,4-dioxiane using a pulsed switching peroxi-coagulation (PSPC) process. The electrosynthesis of H2O2 on cathode and Fe2+ production on iron sacrifice anode were optimized to enhance the 1,4-dioxane degradation. Under current densities of 5 mA/cm2 (H2O2) and 1 mA/cm2 (Fe2+), 95.3 ± 2.2% of 200 mg/L 1,4-dioxane was removed at the end of 120 min operation with the optimal pulsed switching frequency of 1.43 Hz and pH of 5.0. The low residual H2O2 and Fe2+ concentrations were attributed to the high pulsed switching frequency in the PSPC process, resulting in effectively inhibiting the side reaction during the ·OH production and improving the 1,4-dioxane removal with low energy consumption. At 120 min, the minimum energy consumption in the PSPC process was less than 20% of that in the conventional electro-Fenton process (7.8 ± 0.1 vs. 47.0 ± 0.6 kWh/kg). The PSPC should be a promising alternative for enhancing 1,4-dioxane removal in the real wastewater treatment.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WRD.2021.092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WRD.2021.092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
1,4-dioxane degradation using a pulsed switching peroxi-coagulation process
Widely used in chemical product manufacture, 1,4-dioxane is one of the emerging contaminants, and it poses great risk to human health and the ecosystem. The aim of this study was to degrade 1,4-dioxiane using a pulsed switching peroxi-coagulation (PSPC) process. The electrosynthesis of H2O2 on cathode and Fe2+ production on iron sacrifice anode were optimized to enhance the 1,4-dioxane degradation. Under current densities of 5 mA/cm2 (H2O2) and 1 mA/cm2 (Fe2+), 95.3 ± 2.2% of 200 mg/L 1,4-dioxane was removed at the end of 120 min operation with the optimal pulsed switching frequency of 1.43 Hz and pH of 5.0. The low residual H2O2 and Fe2+ concentrations were attributed to the high pulsed switching frequency in the PSPC process, resulting in effectively inhibiting the side reaction during the ·OH production and improving the 1,4-dioxane removal with low energy consumption. At 120 min, the minimum energy consumption in the PSPC process was less than 20% of that in the conventional electro-Fenton process (7.8 ± 0.1 vs. 47.0 ± 0.6 kWh/kg). The PSPC should be a promising alternative for enhancing 1,4-dioxane removal in the real wastewater treatment.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.