Ruaa M. Ismail, Naglaa A. Megahed, Sara Eltarabily
{"title":"热气候条件下基于PCMs的室内热行为数值研究","authors":"Ruaa M. Ismail, Naglaa A. Megahed, Sara Eltarabily","doi":"10.1080/00038628.2022.2058459","DOIUrl":null,"url":null,"abstract":"Achieving indoor thermal comfort is essential for productivity, especially in educational environments, and hence has recently attracted considerable attention. Phase change materials (PCMs) integrated into various building components have been used to improve the indoor temperature. In this study, the effectiveness of integrating macro-encapsulated BioPCMs into the walls and ceilings of lecture halls in an educational building was determined via simulation. The simulations considered a hot climate coupled with controlled night ventilation of 15 air change per hour for enhancing the indoor temperature. Using the EnergyPlus software, simulations were performed for different PCM melting temperatures (25, 27 and 29°C) and thicknesses. The PCM with a melting temperature of 27°C yielded a notable reduction (0.5–3.3°C) in the indoor temperature. Furthermore, increasing the layer thickness to 3.75 cm had little effect on the temperature, as indicated by the incomplete charging process during the night. GRAPHICAL ABSTRACT","PeriodicalId":47295,"journal":{"name":"Architectural Science Review","volume":"65 1","pages":"196 - 216"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Numerical investigation of the indoor thermal behaviour based on PCMs in a hot climate\",\"authors\":\"Ruaa M. Ismail, Naglaa A. Megahed, Sara Eltarabily\",\"doi\":\"10.1080/00038628.2022.2058459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving indoor thermal comfort is essential for productivity, especially in educational environments, and hence has recently attracted considerable attention. Phase change materials (PCMs) integrated into various building components have been used to improve the indoor temperature. In this study, the effectiveness of integrating macro-encapsulated BioPCMs into the walls and ceilings of lecture halls in an educational building was determined via simulation. The simulations considered a hot climate coupled with controlled night ventilation of 15 air change per hour for enhancing the indoor temperature. Using the EnergyPlus software, simulations were performed for different PCM melting temperatures (25, 27 and 29°C) and thicknesses. The PCM with a melting temperature of 27°C yielded a notable reduction (0.5–3.3°C) in the indoor temperature. Furthermore, increasing the layer thickness to 3.75 cm had little effect on the temperature, as indicated by the incomplete charging process during the night. GRAPHICAL ABSTRACT\",\"PeriodicalId\":47295,\"journal\":{\"name\":\"Architectural Science Review\",\"volume\":\"65 1\",\"pages\":\"196 - 216\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00038628.2022.2058459\",\"RegionNum\":3,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00038628.2022.2058459","RegionNum":3,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Numerical investigation of the indoor thermal behaviour based on PCMs in a hot climate
Achieving indoor thermal comfort is essential for productivity, especially in educational environments, and hence has recently attracted considerable attention. Phase change materials (PCMs) integrated into various building components have been used to improve the indoor temperature. In this study, the effectiveness of integrating macro-encapsulated BioPCMs into the walls and ceilings of lecture halls in an educational building was determined via simulation. The simulations considered a hot climate coupled with controlled night ventilation of 15 air change per hour for enhancing the indoor temperature. Using the EnergyPlus software, simulations were performed for different PCM melting temperatures (25, 27 and 29°C) and thicknesses. The PCM with a melting temperature of 27°C yielded a notable reduction (0.5–3.3°C) in the indoor temperature. Furthermore, increasing the layer thickness to 3.75 cm had little effect on the temperature, as indicated by the incomplete charging process during the night. GRAPHICAL ABSTRACT
期刊介绍:
Founded at the University of Sydney in 1958 by Professor Henry Cowan to promote continued professional development, Architectural Science Review presents a balanced collection of papers on a wide range of topics. From its first issue over 50 years ago the journal documents the profession’s interest in environmental issues, covering topics such as thermal comfort, lighting, and sustainable architecture, contributing to this extensive field of knowledge by seeking papers from a broad geographical area. The journal is supported by an international editorial advisory board of the leading international academics and its reputation has increased globally with individual and institutional subscribers and contributors from around the world. As a result, Architectural Science Review continues to be recognised as not only one of the first, but the leading journal devoted to architectural science, technology and the built environment. Architectural Science Review publishes original research papers, shorter research notes, and abstracts of PhD dissertations and theses in all areas of architectural science including: -building science and technology -environmental sustainability -structures and materials -audio and acoustics -illumination -thermal systems -building physics -building services -building climatology -building economics -ergonomics -history and theory of architectural science -the social sciences of architecture