{"title":"妊娠前糖尿病妇女的孕前和糖尿病信息(PADI)应用程序的可行性和可接受性研究","authors":"Chidiebere H Nwolise, Nicola Carey, Jill Shawe","doi":"10.1007/s41666-021-00104-9","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus increases the risk of adverse maternal and fetal outcomes. Preconception care is vital to minimise complications; however, preconception care service provision is hindered by inadequate knowledge, resources and care fragmentation. Mobile health technology, particularly smartphone apps, could improve preconception care and pregnancy outcomes for women with diabetes. The aim of this study is to co-create a preconception and diabetes information app with healthcare professionals and women with diabetes and explore the feasibility, acceptability and preliminary effects of the app. A mixed-methods study design employing questionnaires and semi-structured interviews was used to assess preliminary outcome estimates (preconception care knowledge, attitudes and behaviours), and user acceptability. Data analysis included thematic analysis, descriptive statistics and non-parametric tests. Improvements were recorded in knowledge and attitudes to preconception care and patient activation measure following the 3-month app usage. Participants found the app acceptable (satisfaction rating was 72%), useful and informative. The app's usability and usefulness facilitated usage while manual data input and competing priorities were barriers which participants felt could be overcome via personalisation, automation and use of daily reminders. This is the first study to explore the acceptability and feasibility of a preconception and diabetes information app for women with diabetes. Triangulated data suggest that the app has potential to improve preconception care knowledge, attitudes and behaviours. However, in order for women with DM to realise the full potential of the app intervention, particularly improved maternal and fetal outcomes, further development and evaluation is required.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-021-00104-9","citationCount":"4","resultStr":"{\"title\":\"Preconception and Diabetes Information (PADI) App for Women with Pregestational Diabetes: a Feasibility and Acceptability Study.\",\"authors\":\"Chidiebere H Nwolise, Nicola Carey, Jill Shawe\",\"doi\":\"10.1007/s41666-021-00104-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus increases the risk of adverse maternal and fetal outcomes. Preconception care is vital to minimise complications; however, preconception care service provision is hindered by inadequate knowledge, resources and care fragmentation. Mobile health technology, particularly smartphone apps, could improve preconception care and pregnancy outcomes for women with diabetes. The aim of this study is to co-create a preconception and diabetes information app with healthcare professionals and women with diabetes and explore the feasibility, acceptability and preliminary effects of the app. A mixed-methods study design employing questionnaires and semi-structured interviews was used to assess preliminary outcome estimates (preconception care knowledge, attitudes and behaviours), and user acceptability. Data analysis included thematic analysis, descriptive statistics and non-parametric tests. Improvements were recorded in knowledge and attitudes to preconception care and patient activation measure following the 3-month app usage. Participants found the app acceptable (satisfaction rating was 72%), useful and informative. The app's usability and usefulness facilitated usage while manual data input and competing priorities were barriers which participants felt could be overcome via personalisation, automation and use of daily reminders. This is the first study to explore the acceptability and feasibility of a preconception and diabetes information app for women with diabetes. Triangulated data suggest that the app has potential to improve preconception care knowledge, attitudes and behaviours. However, in order for women with DM to realise the full potential of the app intervention, particularly improved maternal and fetal outcomes, further development and evaluation is required.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41666-021-00104-9\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-021-00104-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00104-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Preconception and Diabetes Information (PADI) App for Women with Pregestational Diabetes: a Feasibility and Acceptability Study.
Diabetes mellitus increases the risk of adverse maternal and fetal outcomes. Preconception care is vital to minimise complications; however, preconception care service provision is hindered by inadequate knowledge, resources and care fragmentation. Mobile health technology, particularly smartphone apps, could improve preconception care and pregnancy outcomes for women with diabetes. The aim of this study is to co-create a preconception and diabetes information app with healthcare professionals and women with diabetes and explore the feasibility, acceptability and preliminary effects of the app. A mixed-methods study design employing questionnaires and semi-structured interviews was used to assess preliminary outcome estimates (preconception care knowledge, attitudes and behaviours), and user acceptability. Data analysis included thematic analysis, descriptive statistics and non-parametric tests. Improvements were recorded in knowledge and attitudes to preconception care and patient activation measure following the 3-month app usage. Participants found the app acceptable (satisfaction rating was 72%), useful and informative. The app's usability and usefulness facilitated usage while manual data input and competing priorities were barriers which participants felt could be overcome via personalisation, automation and use of daily reminders. This is the first study to explore the acceptability and feasibility of a preconception and diabetes information app for women with diabetes. Triangulated data suggest that the app has potential to improve preconception care knowledge, attitudes and behaviours. However, in order for women with DM to realise the full potential of the app intervention, particularly improved maternal and fetal outcomes, further development and evaluation is required.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis