Albert Munyeshyaka, J. Ntahompagaze, T. Mutabazi, Manasse R. Mbonye
{"title":"关于修正高斯-博内引力中准牛顿时空的1+3协变摄动","authors":"Albert Munyeshyaka, J. Ntahompagaze, T. Mutabazi, Manasse R. Mbonye","doi":"10.1142/S0218271823500530","DOIUrl":null,"url":null,"abstract":"The consideration of a 1 + 3 covariant approach to cold dark matter universe with no shear cosmological dust model with irrotational flows is developed in the context of f (G) gravity theory in the present study. This approach reveals the existence of integrability conditions which do not appear in non-covariant treatments. We constructed the integrability conditions in modified Gauss-Bonnet f (G) gravity basing on the constraints and propagation equations. These integrability conditions reveal the linearized silent nature of quasi-Newtonian models in f (G) gravity. Finally, the linear equations for the overdensity and velocity perturbations of the quasi-Newtonian space-time were constructed in the context of modified f (G) gravity. The application of harmonic decomposition and redshift transformation techniques to explore the behaviour of the overdensity and velocity perturbations using f (G) model were made. On the other hand we applied the quasi-static approximation to study the approximated solutions on small scales which helps to get both analytical and numerical results of the perturbation equations. The analysis of the energy overdensity and velocity perturbations for both short and long wavelength modes in a dust-Gauss-Bonnet fluids were done and we see that both energy overdensity and velocity perturbations decay with redshift for both modes. In the limits to {\\Lambda}CDM , it means f (G) = G the considered f (G) model results coincide with {\\Lambda}CDM .","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On 1 + 3 covariant perturbations of the quasi-Newtonian space-time in modified Gauss-Bonnet gravity\",\"authors\":\"Albert Munyeshyaka, J. Ntahompagaze, T. Mutabazi, Manasse R. Mbonye\",\"doi\":\"10.1142/S0218271823500530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consideration of a 1 + 3 covariant approach to cold dark matter universe with no shear cosmological dust model with irrotational flows is developed in the context of f (G) gravity theory in the present study. This approach reveals the existence of integrability conditions which do not appear in non-covariant treatments. We constructed the integrability conditions in modified Gauss-Bonnet f (G) gravity basing on the constraints and propagation equations. These integrability conditions reveal the linearized silent nature of quasi-Newtonian models in f (G) gravity. Finally, the linear equations for the overdensity and velocity perturbations of the quasi-Newtonian space-time were constructed in the context of modified f (G) gravity. The application of harmonic decomposition and redshift transformation techniques to explore the behaviour of the overdensity and velocity perturbations using f (G) model were made. On the other hand we applied the quasi-static approximation to study the approximated solutions on small scales which helps to get both analytical and numerical results of the perturbation equations. The analysis of the energy overdensity and velocity perturbations for both short and long wavelength modes in a dust-Gauss-Bonnet fluids were done and we see that both energy overdensity and velocity perturbations decay with redshift for both modes. In the limits to {\\\\Lambda}CDM , it means f (G) = G the considered f (G) model results coincide with {\\\\Lambda}CDM .\",\"PeriodicalId\":50307,\"journal\":{\"name\":\"International Journal of Modern Physics D\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218271823500530\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0218271823500530","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On 1 + 3 covariant perturbations of the quasi-Newtonian space-time in modified Gauss-Bonnet gravity
The consideration of a 1 + 3 covariant approach to cold dark matter universe with no shear cosmological dust model with irrotational flows is developed in the context of f (G) gravity theory in the present study. This approach reveals the existence of integrability conditions which do not appear in non-covariant treatments. We constructed the integrability conditions in modified Gauss-Bonnet f (G) gravity basing on the constraints and propagation equations. These integrability conditions reveal the linearized silent nature of quasi-Newtonian models in f (G) gravity. Finally, the linear equations for the overdensity and velocity perturbations of the quasi-Newtonian space-time were constructed in the context of modified f (G) gravity. The application of harmonic decomposition and redshift transformation techniques to explore the behaviour of the overdensity and velocity perturbations using f (G) model were made. On the other hand we applied the quasi-static approximation to study the approximated solutions on small scales which helps to get both analytical and numerical results of the perturbation equations. The analysis of the energy overdensity and velocity perturbations for both short and long wavelength modes in a dust-Gauss-Bonnet fluids were done and we see that both energy overdensity and velocity perturbations decay with redshift for both modes. In the limits to {\Lambda}CDM , it means f (G) = G the considered f (G) model results coincide with {\Lambda}CDM .
期刊介绍:
Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.